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Abstract 

Numerical and analytical analysis is used to explain a recently observed experimental 

phenomenon – excitation of spin waves in a spin valve due to an applied spin polarized 

current. Various excited spin waves are identified and a stability analysis is used to 

identify different excitation regimes as a function of the of applied current. 
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In the emerging field of spintronics,1 the operation of various devices involves an 

interaction with a spin polarized current.  In particular, one can use a spin polarized 

current to produce magnetization reversal,  as opposed to conventional magnetic memory 

devices which are controlled by external magnetic fields.  While the importance of spin 

waves in operating spin valves has been discussed, the excitation of spin waves by a spin 

polarized current has only recently have been observed by Kiselev et al.2 In this 

experiment, a complex oscillation of the magnetic moments was induced in the sample, 

even through the current strength was below that required for the reversal.  In a later 

article Lee et. al.3 explained that these oscillations correspond to the excitation of 

inhomogeneous spin waves by the applied spin polarized current.  However, the modes 

that are excited have not been identified and a detailed analysis of their excitation has yet 

to be performed.  In the present work we specifically address these issues. 

We recall the Landau-Lifshitz4 equation in the presence of a dissipative Gilbert 

term and a spin transfer torque5,6,7,8,9 : 

  
dm
dt

= −γm × h ;         (1) 

where 

  
h = htrue +

m
Ms

× βhtrue − IhJ( );      (2) 

here  m  is the magnetic moment and γ is the gyromagnetic ratio.  The combined effects 

of dissipation and a spin polarized current are modeled by the term
m
Ms

× βhtrue − IhJ( ), 

where β is a parameter governing the dissipation, hJ is the polarization of the current, and 

 I  is an empirical factor measuring the strength of the coupling (in units of magnetic field 

where 1000 Oe corresponds to 108 A/cm2).  
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A typical spin valve consists of two magnetic layers, separated by a nonmagnetic 

layer. One of the layers is assumed to have a constant magnetization, and the other, the 

so-called free layer, has a magnetic moment that can change with time. Initially both 

layers are magnetized along the same direction; the spin polarized current entering the 

free layer is also polarized along the same direction. 

Here we will use dimensions similar to those reported by Kiselev et al2,10 in which 

the first (constant magnetization) layer is 20nm thick and the free layer is 2nm thick.  The 

layers are deposited from cobalt and approximate an ellipse with principal diameters 130 

by 70nm. We assume an exchange stiffness A = 1.3 ⋅10−6  erg/cm and a saturation 

magnetization  Ms = 795emu/cm3; it is assumed that there is no exchange interaction 

between the layers.  Our value of Ms  is quite different from that was used by Kiselev4 to 

fit the frequency of the uniform mode. Using either our numerical eigenvalue algorithm 

(see below) or the Kittel equation (with numerically calculated demagnetization tensor 

components) we find that the value we have adopted for Ms  is more consistent with the 

experimental results. 

Our coordinate system is chosen such that the easy axis is parallel to z with the 

magnetic layers lying in the y-z plane. The current direction is along x and it is polarized 

along z.  In our case a current of 1 mA should correspond to aJ ≅ 144  Oe, and the 

damping coefficient β  is taken as4 0.014. We will consider the case when the external 

magnetic field cancels the magnetic field of the thick layer. 
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We start by linearizing the Landau-Lifshitz equation with respect to a small time-

dependent oscillating part of the magnetization, mi
(1)(t) = mi

(1)e−iωt , and corresponding 

oscillating magnetic fields,    hi
(1)(t) . We assume that initially the system is in equilibrium 

with the magnetic moments   mi
(0)  aligned parallel to the local magnetic fields,  hi

(0) . In the 

absence of a current, we have the following eigenvalue equation11: 

     
  
−

dmi
(1)

dt
= γ mi

(0) × hi
(1) + mi

(1) × hi
(0)




+
γβ
Ms

mi
(0) × mi

(0) × hi
(1) + mi

(1) × hi
(0)





  (3a)  

which we rewrite as 

 
  
iωkVi

(k) = γBijVj
(k)              (3b) 

where  ωk  are the eigenfrequencies, Vi
(k)  and (k)

iLV are respectively the right and left 

eigenvectors (giving  the amplitude and phase of the precession of each moment for the 

mode  ωk ), and 
  
Bij  is a matrix which depends on the equilibrium structure and various 

parameters controlling the motion.  Solving Eq. (3) provides us with the complete spin 

wave spectrum for a given level of discretization. It should be noted that the matrix given 

by Eq.(3) is not symmetric; therefore it can be shown that left and right eigenvectors are 

orthogonal to each other, but, in general, not among themselves. 

 We now examine what happens if a spin polarized current is applied to the 

sample. In this case Eq. (3) transforms into an inhomogeneous equation involving a 

source term generated by the applied current: 

   
(1)

(1) (0) (0) (1) (0) (0) (1) (1) (0)i
ii i i i i i i i i

s

d
(t)

dt M
γβ   + γ × + × + × × + × ≈− γ   

m
m h m h m m h m h g  
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(4a) 

where i (t)g  is the source term given by: 

(0) (0) (0) (1) (1) (1)J J J
i i i i i i i

s s s

I I I(t) ( ) ( ) ( );
M M M

= − × × − × × − × ×g m m h m m h m m h   

                     (4b) 

that is a source term responsible for the excitation of spin waves.  In obtaining these 

equations we neglected terms like
I

Ms
m(1) × (m(0) × hJ ) , which can be shown to not 

contribute to the dynamics of the spin waves.  

The solutions of the above equations consist of two parts: a solution of the 

homogeneous Eq. (3a,b), and a solution of the inhomogeneous Eq. (4a,b).  In general, the 

sum of these solutions would be chosen to satisfy any initial conditions.  However, since 

we are mostly interested in steady-state solutions, we will not consider such general 

solutions; in the presence of damping (β > 0 ) the solutions to the homogeneous equation 

decay in time and do not contribute to the steady state behavior.  

 While detailed mathematical solutions of Eq. (4) were studied in reference12, here 

we will use an alternate method of analysis, first introduced in reference13. Since the left 

and right eigenvectors of the homogeneous Eq. (3b) form a complete set (that can be used 

to describe an arbitrary magnetic configuration at some point in time), the solution of Eq. 

(4) can be expanded in terms of them as 

 (1) (k)
ki i

k
a (t)=∑m V .        (5) 

In this case Eq. (4) becomes: 
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 *(k)k
k k L

da (t) ia (t) dxdydz
dt

+ ω = −γ∫∫∫ gV ;     (6) 

in a discrete version, the integration is replaced by a summation. Starting with the first 

contribution to the source term in Eq. (4b) we obtain 

( )(0) (0) *(k)Jk
k k i i iL

s i

da (t) Iia (t) ( )
dt M

+ ω = γ × × ⋅∑ m m h V    (7a) 

that can be solved for  ak(t)   

( )(0) (0) *(k)J
i i iL

i
k

k s

( )
a (t) I .

i M

× × ⋅

= γ
ω

∑ m m h V
     (7b) 

We see that in this case the solution is time independent and simply represents a static 

shift from the initial equilibrium; here ak  is nonzero only for the “modes” that are 

concentrated in the regions where the equilibrium magnetization is not parallel to the 

current polarization and therefore is not parallel to the external field.  The modes excited 

by this term are so-called “edge modes” corresponding to a static shift between the new 

equilibrium configuration, formed in the presence of the current, and the old equilibrium. 

The second term in Eq. (4) gives 

 ( )(0) (k ) *(k)Jk
k k k i i iL

s i,k

da (t) Iia (t) a (t) ( )
dt M

′
′

′
+ ω = γ × × ⋅∑ m V h V  (8) 

which we rewrite as   

 
 

dak(t)
dt

+ iak(t)ωk = γ ck ′k a ′k (t)
′k
∑       (9a) 

with 

 ( )(k ) *(k) (0) J
kk i iL i

s i

Ic .
M

′
′ = ∑V V m hi      (9b) 
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If all of the magnetic moments are parallel to each other, ck ′k = I
mz

(0)

Ms
δk ′k ; this is 

approximately the case since the polarization of the current is aligned with both the easy 

axis and the external field; if  ′k is not equal to k, ck ′k can initially be only a few percent 

of 
 
I

mz
(0)

Ms
.  For such times we can assume that ck ′k = I

mz
(0)

Ms
δk ′k  yielding 

 

dak(t)
dt

+ iak(t)ωk = γI
mz

(0)

Ms
ak(t)       (10) 

which has the solution 

 ak(t) = ak(0)e−iωkte
γI

mz
(0)

Ms
t
.       (11) 

Since  ωk = ωk
′ − iωk

′′we can rewrite Eq. 11 as  

  ak(t) = ak(0)e−iωk ' te
γI

mz
(0)

Ms
−ωk′′













t

.      (12) 

Note there are two regimes i) if 
 
γI

mz
(0)

Ms
< ωk

′′ , the oscillations die out exponentially in 

time, and ii) if
 
γI

mz
(0)

Ms
> ωk

′′ , the excitation of kth mode increases exponentially, and the 

initial equilibrium therefore becomes unstable.  

The uniform mode typically has the lowest frequency, for both its real and 

imaginary parts. Because of this, the uniform mode is expected to be the most strongly 

excited mode; for larger currents higher frequency modes will be excited, however their 

growth rate will be smaller than that of the uniform mode. The phase of the oscillations is 
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fixed by  ak(0) , which in our model is fixed by (small) random component of the 

orientations which are present in the initial state and simulate  finite temperature effects. 

In order to further study the excitation of the uniform mode we can use a 

macrospin model, shape effects being included through a  demagnetization tensor 
 
Aαβ : 

 
 
Hα = AαβMβ

β
∑ .        (13) 

For the above-mentioned ellipse (130 × 70nm ), the numerically-estimated principal 

elements are Azz = −0.27,  Ayy = −0.61,  and Axx = −11.69 . Since our numerical studies 

show that the x component of the magnetization remains small, we will neglect  mx
(0)  in 

what immediately follows.  Modifying the Kittel formula to account for damping one 

then has: 

 

ω = γ H0 + mz
(0)B( )H0 + mz

(0)A( )− iγ
β

Ms
mz

(0)
H0 + mz

(0)B( )+ H0 + mz
(0)A( )

2

















 (14) 

where we defined 

 

A ≡ Az − Ay( )= −0.27 + 0.61= 0.34

B ≡ Az − Ax( )= −0.27 +11.69 = 11.42

C ≡ Ay − Ax( )= −0.61+11.69 = 11.08.

     (15) 

In the absence of an external field, Eq. (14) can be extended to the case of an arbitrary 

direction of the magnetization in z-y plane as 

   
 
ω = γ (mz

(0) )2AB − (my
(0) )2AC − iγ

β
2Ms

(mz
(0) )2 A + B( )+ (my

(0) )2 C − A( )( ). (16) 

Inserting this expression into Eq. (12) we see that a steady state solution is possible (as 
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first predicted by Li and Zhang10); even though current is larger than the imaginary part 

of the uniform mode frequency at t = 0 the, for a certain value of mz
(0)  the following 

expression is satisfied: 

 
 
γ Ic

mz
(0)

Ms
= ωk

′′         (17a) 

and on using Eq. (16) we have 

 
 

β
2

mz
(0)2

A + B( )+ my
(0)2

C − A( )




= Imz

(0) ;     (17b) 

i.e., the uniform mode simply oscillates with its own resonant frequency.   

However, this is not the only possible behavior. Since the eigenvector depends on 

the direction of magnetization, it is clear that initially ( my
(0) = 0 ) the oscillations are 

confined to the x-y plane; excitation of the uniform mode leads to a slow decrease of 

 mz
(0) .  However when  mz

(0)  is small the oscillations include a significant z component. 

Because of this, even if the system reaches the value of mz
(0) which satisfies Eq. (17), the 

oscillations in z-y plane do not stop. If the current is not sufficiently strong, it is possible 

for the magnetization to move towards smaller values of mz
(0) , where the oscillations 

increase, followed by the magnetization moving towards larger of values of  mz
(0)  where 

the damping exceeds the excitation due to the current, and so on, back and forth, 

producing a complex oscillatory pattern.  The non-linear interactions due to 

  

I
Ms

m(1) × (m(1) × hJ )  and other nonlinear terms should also be taken into account. 
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However, if the current is strong enough, and therefore the value of mz
(0)  for which the 

damping exceeds the excitation is small enough, the value of mz
(0)  can become negative8.  

As soon as this happens, the term in Eq. (12) arising from the applied current changes 

sign and produces additional damping. The more negative mz
(0)  is, the higher the 

damping is, and, as a result, the system switches to the new equilibrium configuration, 

with the magnetization aligned in the opposite direction with respect to the initial 

configuration 

Since we have made a number of approximations in the above discussion, we 

need to verify our conclusions with numerical experiments. We used a Runge-Kutta 

based simulation that proceeds as follows:  We first obtain the equilibrium configuration 

in the absence of the current. We then slightly perturb all the magnetic moments in a 

random manner, thereby simulating a finite temperature excitation in the system, while at 

the same time applying the spin polarized current. This is followed by taking a Fourier 

transform of time dependence of Mz , which corresponds to experimentally measuring 

the sample resistance4.  However, Fourier analysis of the magnetization is not sufficient 

to tell us which modes are actually excited –growth or decay broadens the spectrum; 

additional effects that we have not addressed can also affect the spectrum.  In order to 

have a clearer picture of which modes are excited we will spatially decompose the 

oscillations into small amplitude spin waves: 

 

(1) (0)

*(k)(1)
k L

(t) (t)

a (t) (t) dxdydz

= −

= ⋅∫∫∫
m m m

m V       (19) 
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It should be noted that such expansion onto a set of eigenvectors gives us a somewhat 

incomplete representation: since only two coordinates per dipole are being used, we are 

failing to account for the sign of the projection of (1)(t)m  onto initial configuration 

(0)m . In the current work this problem can be neglected since once the sign of the 

magnetization is changed the oscillations are going to be damped out. 

We start with a “damped” regime, in which most of the oscillations die out according to 

Eq. (12).  Initially we see a small excitation of nearly all the modes, which can be 

explained by the fact that the momentarily applied current possesses a broad Fourier 

spectrum, which therefore excites a broad spectrum of modes.  Following this, all modes 

decay exponentially, with the exception of the modes identified from Eq. (7). The 

numerically calculated value of the threshold current is in a good agreement with the 

theory, being typically 0.04 mA∼  higher than that given by Eqs. (12) and (14).  For the 

currents above this value (0.49 mA with no external field, 0.71 mA for  H0= 2600 Oe) we 

indeed see a steady-state behavior, as shown in Fig.1.  In addition to the uniform mode 

(f=4.09 GHz) we also show behavior of two non-uniform modes with nieghbouring 

frequencies: 5.23 and 8.89 GHz. As noted above, the oscillations of z component of 

magnetization are determined mostly by z component of the eigenvector (Fig. 2).  It is 

interesting to note that if instead of starting with a random initial perturbation, we start 

with a finite amplitude of the uniform mode, the system still evolves into a steady state 

that involves non-uniform modes; the only difference will be that it will take far less time 

for a uniform mode to reach the steady state regime. The reasons behind this are the 

neglect mode-mode coupling terms in Eq. (9) and other non-linear terms. If the current is 

increased, a complex oscillation pattern forms, involving both oscillations of the uniform 
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mode (Fig.3) and the z component of the magnetization (Fig. 4).  If the current is 

increased even further, switching occurs (Figs. 5 and 6). As can be seen, the general 

behavior is consistent with the above analytical analysis – the uniform mode grows until 

a semi-steady state forms for a very small value of Mz ; then, due to non-zero value of 

 Vz  the system acquires a small but negative value of Mz . As soon as this happens, the 

modes are quickly suppressed by the combined effects of the damping and the applied 

current.  Fig. 7 shows the relative maximum excitation of modes for different currents, 

corresponding respectively to the damped, steady state, and oscillatory regimes. As one 

can see, in a damped regime (I = 0.28 mA) excitation of the modes is rather non-

selective, and is determined by the coupling between initial random excitations and the 

momentarily applied current.  In the steady state regime (I = 0.5 mA) only a very few low 

frequency modes satisfy Eq. (12) and as a result, only few modes are excited. In an 

oscillatory and switching regimes (I = 0.7 mA and 0.76 mA), the current is strong enough 

to excite many modes; however, low frequency modes are excited more strongly than 

higher frequency ones – the exponent in Eq. (12) is typically larger for lower than higher 

frequency modes.  

 

Conclusions 

 

In our work we succeeded in establishing that there are four possible spin wave excitation 

regimes in the presence of an applied spin polarized current.  Depending on the 

magnitude of the current we can have: 
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a. A damped regime where the system approaches a new static 

equilibrium.  

b.  A steady-state regime, characterized by a nearly constant excitation of 

a very few low frequency modes, and relatively small excitation of 

other modes. 

c. Oscillatory behavior, where a broad spectrum of modes is excited, 

with the preference given to low frequency modes. 

d. Switching, where the semi-steady state excitation of modes is 

superseded by very fast damping into the new static equilibrium, with 

the magnetization anti-parallel to its initial value.  
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Figures. 

 

Figure 1. Amplitude of the most exited modes as a function of time with no external 

field and a current of 0.5 mA. 
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Figure 2. Z component of the magnetization as a function of time with no external 

field and a current of 0.5 mA. 
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Figure 3. Amplitude of the uniform mode as a function of time with no external field 

and a current of 0.7 mA. 
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Figure 4. Z component of the sample’s magnetization as a function of time with no 

external field and a currentof 0.7 mA. 
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Figure 5. Amplitude of the uniform mode as a function of time with no external field 

and a current of 0.76 mA. 
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Figure 6. Z component of the sample’s magnetization as a function of time with no 

external field and a current of 0.76 mA. 
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Figure 7. Maximum amplitude of various modes as a function of their frequency for 

different current values and no external field. 


