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A general method is developed to find the equilibrium magnetization and the eigenfrequencies(resonant
modes) associated with a magnetic body of arbitrary shape based on the discrete dipole approximation. In this
first of a series of papers the method is applied to the simple case of a line of dipoles with the magnetic field
both parallel and perpendicular to the axis of the line.
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I. INTRODUCTION

Studying the response to a microwave magnetic fieldH1
in the presence of a strong static magnetic fieldH0 (e.g.
ferromagnetic resonance or FMR) is a powerful technique to
investigate the coherent dynamics of magnetic particles.
Such experiments are typically carried out at frequencies on
the order of 1010 Hz. Domain switching in inhomogeneously
magnetized bodies occurs at comparable rates.

Information about the exchange interaction, magnetic an-
isotropy, and dissipation processes in bulk ferromagnets can
be obtained from the FMR technique. Size and shape play a
role in modifying the resonance modes of nanoscale ferro-
magnetic particles. The collective behavior of the magneti-
zation also involves coupling of the precessing uniform mag-
netization to the spin wave modes,1 particularly at high rf
drive levels. A detailed knowledge of how these phenomena
affect the modes may ultimately be of practical interest since
dynamical switching studies may offer a faster writing tech-
nology, while resonance probes may provide an alternative
read technology.

Experiments on ferromagnetic resonance in ferrites have
shown that under suitable conditions the power absorption at
a fixed frequency may pass through a number of maxima as
the dc magnetic field is varied. A necessary condition for the
excitation of these features is that the rf magnetic field at the
sample be inhomogeneous. In experiments involving insulat-
ing ellipsoidal ferrites the rf exciting fields are not expected
to change rapidly over a small sample and the wavelengths
of the excited modes are generally comparable with the di-
mensions of the body. If exchange is neglected, these modes
can be calculated, to a very good approximation, by using a
magnetostatic condition,=ÃH =0, and hence they are called
magnetostatic modes. Mercereau and Feynman2 identified a
few of the more simple distributions for a sphere, and
Walker3,4 calculated all the possible solutions for a spheroid.
The resulting modes were numbered by the indices of asso-
ciated Legendre polynomials and a periodic exponential
function. Fletcher and Bell5,6 and Plumier7 carried out an
extensive analysis and numerical calculations for spheres,
providing tables for various solutions. The physical nature of
the magneto-static modes was later partially clarified by the
work of Damon and Eshbach.8

Walker’s analysis was formulated in terms of a
continuum-matter, magnetostatic boundary-value problem.
In this paper, we explore a numerical approach based on a

model involvingN discrete dipoles, often called thediscrete
dipole approximation. One can also trivially add exchange
effects, which is not the case with the analytic approaches.
The first attempt to use a discrete dipole approach for mag-
netostatic spin waves was done by Politiet al.9 A disadvan-
tage of the discrete dipole approach is that, since it reduces to
an eigenvalue problem for which the size of the associated
matrix is 2N32N, the eigenvalue routines ultimately down
break for large numbers of particles.

Our approach involves a solution of the coupled Larmor
equations of the individual dipoles with all fields acting on
them explicitly accounted for(dipole, exchange, and mag-
netic anisotropy). It can be viewed as a discrete version of
the Landau-Lifshitz equation. For small oscillation ampli-
tudes we can recast the problem as a system of linear equa-
tions, where the eigen-frequencies are the resonant modes,
and the eigenvectors are the relative amplitudes of excitation
of the individual dipoles.

A natural question is how the modes of our discrete dipole
model relate to those of Walker. The case of simple cubic
packing within a sphere with a given radius roughly corre-
sponds to the results obtained by Walker and Fletcher for a
continuum sphere. An unavoidable problem that arises in try-
ing to make such a comparison is that the cubic packing will
always be restricted to the symmetries of a cube, while the
analytic continuum solution of Walker has the full symmetry
of the sphere. We have not as yet been able to devise a
method to unambiguously associate our eigenfrequencies
with those of the continuum model. It would be of interest to
pursue this problem.

An advantage of our approach lies in the fact that we can
apply the method to particles of arbitrary shape, for which
analytical solutions cannot be constructed. This is particu-
larly relevant for cylindrical- and disk-shaped nanoparticles,
which are relatively easy to pattern experimentally and are of
much current interest. In recent years a few articles have
been published that discuss the dynamic properties of dis-
crete dipole structures.10 There is also significant interest in
studying the equilibrium configurations of magnetic struc-
tures; however these works are not explicitly related to the
present study.

Recently a technique was proposed to “scale” static dis-
crete dipole calculations for smaller size objects to describe
larger systems.11 Extending this to scale the dynamical prop-
erties discussed here would be of great interest.
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II. MICROMAGNETICS STRATEGIES

Here we present our strategy to model the magnetic prop-
erties of magnetic nanostructures.

Only ellipsoids and degenerate forms thereof can have a
uniform magnetization. All other shapes are nonuniformly
magnetized. The exchange interaction prefers to keep the
magnetization of all spins parallel, but dipolar shape effects
compete to make this direction position dependent in a non-
ellipsoidal body. One usually assumes that themagnitudeof
the magnetization is constant and we will assume this, al-
though this may not be the case for small(near-
superparamagnetic) particles or near the transition tempera-
ture. Our model is based on simply summing the magnetic
field from discrete, point dipoles that uniformly fill the body
in question on some grid.11 The magnetic moment of these
particles is fixed so as to reproduce the magnetizationM
(i.e., the magnetic moment per unit volume) of the body in
question. Thus the field on a dipolei is given by summing
over the fields produced by the remaining dipoles,j , which is
given by the usual form

hi
dipole= o

jÞi

m jS= = S 1

r ij
DD = o

jÞi
F3r i jsm j · r i jd

r ij
5 −

m j

r i j
3 G .

s2.1d

To account for the exchange interaction we can add a
second “effective” or “exchange” field on theith dipole of
the nearest-neighbor Heisenberg type:

hexchange= Jo
NN

m. s2.2d

The exchange constantJ would be adjusted to reproduce the
experimental continuum limit coefficient of the gradient
energy.12 Surface pinning will arise naturally since these mo-
ments have no neighbors; it could be adjusted by alteringJ
for surface or-near surface moments.J in general needs to be
scaled according to the prescription used to discretize the
body.

The sum of the dipole, exchange and external field,H0,
acting on theith dipole is then given by

hi = hi
dipole+ hi

exchange+ H0

= o
jÞi
F3r i jsm j · r i jd

r ij
5 −

m j

r i j
3 G + hi

exchange+ H0. s2.3d

The crystalline anisotropy energy for the uniaxial case has
the form EA=K sin2 u. The resultant torque,NA=]EA/]u,
may be written in a vector form as

NA = K
sm · ĤAdm 3 ĤA

m2 ,

HA
eff =

Ksm · ĤAd
m2 ĤA =

Ksm · ĤAd
m2 ĤA, s2.4d

where the unit vectorĤA points along the anisotropy axis;
for an easy axis systemK is positive while for the easy-plane
system it is negative. In the examples treated in the article we

will limit ourselves to dipole-dipole and exchange interac-
tions only.

We have used four different methods to find the equilib-
rium configuration.

(1) One approach is to perform a Runge-Kutta integration
of the Landau-Lifshitz equation with a damping term and a
random starting configuration. This method has numerous
disadvantages.

(a) For long running times, one needs to introduce
tricks in order to keep the magnitude of dipole moment con-
stant.

(b) Unstable configurations that have no torque acting
on the dipoles, unless some perturbation is introduced, can
be made stable by the presence of damping.

(c) In some cases the ground state and a few meta-
stable states can coexist. In such a case the final configura-
tion depends on the initial configuration of the integration.
(This will be discussed in detail in Sec. IV E.)

(2) A second approach is the Monte-Carlo method. With
enough samples a state very close to the true ground state
can be located. However this approach becomes very slow
for more than a few dipoles.

(3) In the third approach we choose the initial directions
randomly and rotate the dipoles so as to maximize the gra-
dient in the energy. By moving to these directions, evaluating
the energy and again reorienting the dipoles so as to maxi-
mize the gradient, we may continue until the decrease in
energy drops below some preset value. This method gave us
mixed results—it worked well for some configurations, but
in other cases it would become trapped in regions with very
small energy gradients for too long. As can be shown, for
certain unstable configurations some external intervention is
required to force the system out of such traps.

(4) The most successful approach involved a relaxation-
like method. Here we start with a random configuration of
spins. We then calculate the field at positioni arising from
Eq. (2.3). Then we align each magnetic moment parallel to
the new local field. We continue this process of inserting the
moments into(2.3) and reorienting them until the local fields
stabilize. This can be taken as the initial(equilibrium) mag-
netic configuration of the particles.

With this method one can occasionally become trapped by
repetitively jumping between two unstable configurations,
but for most situations it proved to be the fastest and most
reliable. Unstable configurations with no torque acting on the
dipoles are highly improbable, and even small deviations
force the system to walk away from them.

As with the Runge-Kutta integrations, in the presence of
metastable states, the final configuration depends on the ini-
tial, randomly chosen, starting point. However we are free to
quickly try new starting configurations.

III. FERROMAGNETIC RESONANCE

The resonant modes follow from the solution to the Lar-
mor equation,

dmi

dt
= − gmi 3 hi

total. s3.1d

We linearize the problem by writing

RIVKIN et al. PHYSICAL REVIEW B 70, 184410(2004)

184410-2



mi = mi
s0d + mi

s1d s3.2ad

and

hi
total = hi

s0d + hi
s1d. s3.2bd

Inserting these expressions into Eq.(3.1) gives

dmi
s1d

dt
= − gfmi

s0d 3 hi
s1d + mi

s1d 3 hi
s0dg, s3.3d

where

hi
s0d = hi

dipole+ hi
exchange+ H0 = o

jÞi

m j
s0dS= = S 1

r ij
DD

+ hi
exchange+ H0 s3.4ad

and

hi
s1d = hi

dipole+ hi
exchange= o

jÞi

m j
s1dS= = S 1

r ij
DD + hi

exchange.

s3.4bd

We assume a solution of the form

mi
s1dstd = mi

s1de−ivt, s3.5d

and Eq.(3.3) becomes

ivmi
s1d = gfmi

s0d 3 hi
s1d + mi

s1d 3 hi
s0dg. s3.6d

Using Eq.(3.4b) we can write Eq.(3.6) as

ivmi
s1d = gmi

s0d 3 Fo
jÞi
F3r i jsm j

s1d · r i jd
r ij

5 −
m j

s1d

r ij
3 G + hi

exchangeG
+ gmi

s1d 3 hi
s0d. s3.7d

Equation(3.7) has the structure of a vector eigenvalue prob-
lem. The solutions should contain all the(generally mixed)
dipolar and spin-wave modes. By settingJ=0 we can elimi-
nate the exchange-coupled spin wave modes. To solve Eq.
(3.7), one needs to rewrite the vector equation as a system of
three coupled scalar equations(the x-, y-, andz-component
projections of the vector equation).

Since in our problem the magnitude of unperturbed mag-
netic moment is a constant, we actually only have 2 indepen-
dent components; hence by working with a set of coordinates
aligned with the equilibrium direction of each dipole, one
can rewrite Eq.(3.7) in a form involving only a 2N by 2N
matrix. Although the appropriate equations were obtained,
they were not implemented in the present study due to the
increased complexity of coding the expressions involved. As
a result one third of the eigenfrequencies returned using the
three-component form of the equations will be zero.

An alternative to the eigenvalue approach is to directly
integrate the Larmor equation for an assembly of spins using,
say, the Runge-Kutta method. This is a powerful approach
and routines that perform this integration are available.13 A
disadvantage is that it does not yield the eigenfrequencies
directly, but only a large response to an external drive at
specific frequencies.14 One needs to perform the calculation
for a range of frequencies and not all of the modes will be

excited for a given drive field. One of the biggest advantages
of the method presented in this paper is that it allows one to
modify the original problem by assuming periodic boundary
conditions in some of the directions, or by performing some
sort of scaling, which allows one to work with millions of
spins formed into a few thousand superspins. The practical
implementation of such approaches will be discussed in fu-
ture papers. However it should be emphasized that the
Runge-Kutta method has the property that it is applicable to
the nonlinear regime.

Suppose we have obtained a positive-frequency solution
and the associated complex eigenvector:

m = mreal + imimag. s3.8ad

For the solution having the same magnitude of the frequency,
but with the opposite sign, we have

m = mreal − imimag, s3.8bd

i.e., we have the complex conjugate eigenvector. So the true
motion must be represented as

smreal + imimagde−ivt + smreal − imimagde+ivt

= 2mreal cosvt + 2mimagsinvt, s3.9d

which is a real quantity.

IV. CALCULATIONS

For the sake of simplicity we will assume the particle
number along each direction to be odd and given by(upper
case) lettersNx, Ny and Nz where the total number of par-
ticles is thenN=NxNyNz; we identify the quantitiessNx,y,z

−1d /2 with the (lower case) letters,nx, ny andnz.
When we use periodic boundary conditions we “wrap” the

sample around itself so that

mNx,y,z+q = mq. s4.1d

Assuming that the solutions of Eq.(3.7) are plane waves we
have

mW q = eikW·qW ,

mW Nx,y,z+q = mW q; eikx,y,zsNx,y,z+qd = eikx,y,zsqde2ppx,y,z,

kx,y,z =
2ppx,y,z

Nx,y,z
, s4.2d

SNx,y,z, − 1

px,y,z
D

min
= 2; pmax=

Nx,y,z, − 1

2
= nx,y,z;

px,y,z = − nx,y,z,nx,y,z − 1, . . . ,0, . . .nx,y,z.

Here px,y,z are integers with values from −nx,y,z to +nx,y,z.
When these conditions apply the solutions are plane waves
but because of the imposed boundary conditions they will
have a discrete spectrum. Note the minimum possible wave-
length in the sample is 2(the lattice constant is equal to 1).
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A. Bloch spin waves

We can apply this formalism to the case where we have an
exchange interaction with an external magnetic field applied
along thez direction, but no dipole-dipole interaction. In this
case the local field is parallel to the external field and the
solution for the case of periodic boundary conditions has the
form

my
s1dsx,yd = + ieikxxeikyyeikzz; mx

s1dsx,yd = eikxxeikyyeikzz; mz

= 0. s4.3d

Using Eq.(3.7) and taking thex, y, andz coordinates to be
discrete, and a lattice constant equal to 1, we have

v

g
eikxxeikyyeikzz = Ms o

r8Þr,NN

s− Jeikxx8+ikyy8+ikzz8d

+ eikxxeikyyeikzzSH0 + Mso
NN

JD ,

s4.4d

−
v

g
eikxxeikyyeikzz = Ms o

r8Þr,NN

sJeikxx8+ikyy8+ikzz8d

− eikxx+ikyy+ikzzSH0 + Mso
NN

JD ,

whereMs is the saturation magnetization andH0 is the ex-
ternal magnetic field; the sum is performed among nearest
neighbors only. The resulting frequencies are then

v = gH0 + MsgJf6 − 2 cosskxd − 2 cosskyd − 2 cos„kzd…,

v < gH0 + gJMsk
2, s4.5d

which is a well known formula for Bloch spin waves. The
moments associated with these waves have a constant tip-
ping angle but different relative phases. All modes, with the
exception of one withkx=ky=kz=0, have degeneracies—if

we change the direction of propagation, we do not change
the frequency of the wave.

B. Modes of a dipole-dipole coupled line parallel to an
external field: Periodic boundary conditions

We will apply the above model to calculate magnetostatic
resonance modes, or dipole spin waves, for the simple case
of a line of atoms with the magnetic field both parallel and
perpendicular to the line. We do this for the case of a line
with free ends as well as one satisfying periodic boundary
conditions.

We choose a coordinate system such that all the spins lie
along thez-axis. The component of the eigenvectors parallel
to the applied field vanishes, so that the oscillations are con-
fined to thex-y plane. Equation(3.7) then takes the form

i
v

g
mix

s1d = MsSo
jÞi

S+
mjy

s1d

r ij
3 D + Js2miy

s1d − msi−1dy
s1d − msi+1dy

s1d dD
+ miy

s1dSH0 + o
z=1..Nz

S4Ms

uzu3 DD ,

i
v

g
miy

s1d = MsSo
jÞi

S−
mjx

s1d

r ij
3 D − Js2mix

s1d − msi−1dx
s1d − msi+1dx

s1d dD
− mix

s1dSH0

Ms
+ o

z=1..Nz

S4Ms

uzu3 DD . s4.6d

If we assume a periodic boundary condition, we can solve
these equations analytically in terms of the plane wave
forms:

my
s1dszd = eiweikz; mx

s1dszd = eikz. s4.7d

From this we obtain

FIG. 1. Fsk,Nd as a function of wavevectork; N=2001
dipoles.

FIG. 2. Frequency as a function of wave vector with the sample
parallel to the applied field;n=1000,N=2001 dipoles.
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e−2iw = − 1; w =
p

2
,

v = gMs o
z8Þz

eiksz8−zd

rz8z
3 + gSH0 + Ms o

z8Þz

2

rz8z
3 D + gMsJs2 − e−ik

− eikd,

o
z8Þz

eiksz8−zd

rz8z
3 = 2 o

x8−x=1

N Scos„ksz8 − zd…
sz8 − zd3 D = 2o

d=1

N Scosskdd
d3 D

= 2Fsk,Nd, s4.8d

o
d=1

N S 1

d3D = Fs0,Nd,

v = 2gMsFsk,Nd

+ gMs4Fs0,Nd + gH0 + 2gMsJ„1 − cosskd….

Figure 1 shows the behavior of the functionFsN,kd as a
function of k.

Hereafter for the figures we will assume for simplicity,
g=1, Ms=1, a=1. The dispersion curve is given in Fig. 2
(positivek only).

C. Modes of a dipole-dipole coupled line perpendicular to
an external field: Periodic boundary conditions

Here we only treat the case where the field is sufficiently
high that in equilibrium the spins are essentially aligned
along the applied magnetic field(this requires fields above
<7.2 in our units), the low-field behavior will be discussed
in Sec. IV E. Unlike the previous case, where the orbits were
circular, here they are in general elliptical.

Similar to the previous case we obtain

i
v

g
mix

s1d = Mso
jÞi

Smjy
s1d

r ij
3 − Jmjy

s1dD
+ miy

s1dSH0 + Mso
jÞi

S−
1

r ij
3 + JNNDD ,

i
v

g
miy

s1d = Mso
jÞi

S3sxi − xjd2mjx
s1d

r ij
5 −

mjx
s1d

r ij
3 + JNNmjx

s1dD
− mix

s1dSH0 + Mso
jÞi

S−
1

r ij
3 + JNNDD , s4.9d

whereJNN appears only in the sum among nearest neighbors.

FIG. 3. Frequency as a function of the wave vector with the
sample perpendicular to the applied field;n=1000, N=2001 di-
poles, H0=10.

FIG. 4. Amplitude as a function ofz for an “end” mode; 1500 dipoles.
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We now seek solutions of the form

my
s1dsxd = beiweikx; mx

s1dsxd = aeikx; s4.10d

in this casea2/b2 is a measure of the ellipticity of the orbits.
Using the fact thatFsk,Nd is always real, and from two
possible values for eiw, we choose the one corresponding to
positive frequencies.

The solution is

w =
p

2
;

a2

b2 = 1 +
6Fsk,Nd

− 4Fsk,Nd + 2J„1 − cosskd… +
H0

Ms
− 2Fs0,Nd

,

v2 = g2Ms
2F2Fsk,Nd + 2J„1 − cosskd… +

H0

Ms
− 2Fs0,NdG

3F− 4Fsk,Nd + 2J„1 − cosskd… +
H0

Ms
− 2Fs0,NdG

s4.11d

whereFsk,Nd was defined in the previous section.
At high fieldsa2/b2 approaches 1, approximately as 1/H0,

implying that the orbits are circular in this limit.
Since Fsk,Nd changes sign fork=p /2, a2

”b2−1 also
changes sign at this point and modes with smallerk have
a.b, with the semi-major axis of oscillation aligned with
the sample axis; modes with largerk havea,b, and have
the semi-major axis of oscillation perpendicular to the
sample axis. The dispersion relation is shown in Fig. 3.
Again, all modes but the one withk=0 are degenerate for
forward and backward traveling waves.

D. Modes for a dipole-dipole coupled line parallel to an
external field: Nonperiodic boundary conditions

We start with Eq.(4.6), but this time there are no bound-
ary conditions, i.e., no artificial “wrapping” of the line. In

FIG. 5. Mode amplitude as a function of dipole coordinatez for
the “bulk-pi” mode;N=300 dipoles.

FIG. 6. Mode amplitude as a function of dipole coordinatez for
the “bulk” mode;N=300 dipoles.

FIG. 7. Example of low-field equilibriums occurring in a line
perpendicular to the external magnetic field.(a) Ground state;(b)
“domain” state.

FIG. 8. Eigenfrequencies of a low-field ground state;J=0, 21
dipoles.
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this case the local magnetic field is a function of a coordinate
z and we cannot obtain a simple solution in terms of plane
waves; we must therefore find the eigenfrequencies numeri-
cally.

In this case the solution can be represented as

my
s1dszd = iFszd, mx

s1dszd = Fszd. s4.12d

Solving for Fszd numerically we find that there are three
types of oscillations present in the system.

One of these we refer to as “pi-modes” which are charac-
terized by a phase shift ofp between neighboring dipoles.
However there are two types of “pi-modes”—“end” symmet-
ric and anti-symmetric modes that exist only close to the
ends of the line(Fig. 4—this type of oscillation was first
reported by Politiet al.9), and which exponentially decrease
inside the sample. We also find “bulk pi modes” which are
characterized by a periodic envelope(Fig. 5).

Other modes(“bulk” modes) are simply standing sine
waves with circular(constant tipping angle) orbits, as pre-
sented in Fig. 6.

E. Modes of equilibrium states in the presence of a weak
external field

For the case where the external field is insufficient to
align all spins parallel to it, different configurations occur
from those presumed in the above discussion. We discuss
two cases: In one case the lowest energy state corresponds to
all dipoles tipped at a constant angle in the plane defined by
the external field and the line axis.[Fig. 6]. When no external
field is present this is the only possible configuration—all
dipoles are parallel to the line axis. We should mention that

FIG. 9. Dispersion curves of a low-field ground state and differ-
ent values of the applied field;J=0, 1001 dipoles.

FIG. 10. Eigenfrequencies of a low-field ground state;J=10, 21
dipoles.

FIG. 11. Eigenfrequencies of a low-field ground state with non-
periodic boundary conditions;J=0, 21 dipoles.

FIG. 12. Eigenfrequencies of a “2 kinks domain” state with
periodic boundary conditions;J=0, 21 dipoles.
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since all dipoles have the same direction, the exchange inter-
action plays no role.

Another possibility is what we can call “domain” states,
shown in Fig. 7(b); as can be seen, one or more kink-like
structures form, separating regions where groups of dipoles
align anti-parallel to those in neighboring regions. This kind
of configuration forms only in dipole-dipole, and not ex-
change, dominated samples. It ismetastable, with the energy
exceeding that of the ground state by approximately 11 en-
ergy units per kink. It does not exist if the applied field is
either too strong or too weak to sustain it. More than one
“domain” state(with different numbers of kinks) can form at
the same time; however when periodic boundary conditions
are applied, only configurations with an even number of
kinks are possible.

We also mention that there are a number of unstable states
for which the dipoles are oriented parallel to the local mag-
netic field and as a result experience no torque; but a small
perturbation will force the system out of such configurations.
It is noteworthy that these states have complex eigenvalues.

The ground state appears when the expression for the fre-
quency given in Eq.(4.11) gives a complex result:

H0

Ms
, 6o

d=1

N S 1

d3D ,

s4.13d

H0

Ms
, 6Fs0,Nd.

Requiring that dipoles should be parallel to the local mag-
netic field, we have

sinw =
H0

6MsFs0,Nd
, s4.14d

wherew is the angle between the dipoles and thex axis. The
energy per dipole in this case is a constant:

E

N
= − 4MsFs0,Nd. s4.15d

The modes of such a system are given by

mix
s1d = aeikx,

miy
s1d = ibeikx, s4.16d

miz
s1d = − mix

s1dÎ36Ms
2F2s0,Nd
H0

2 − 1.

Then

v2 =
g2Ms

2

3
fFsk,Nd + J„1 − cosskd… + 2Fs0,Ndg

·FS12 −
H0

2

Ms
2F2s0,Nd

DFsk,Nd

−
2

3
JS H0

2

Ms
2F2s0,Nd

− 18Dcosskd + 24Fs0,Nd + 12JG ,

which is always positive if Eq.(4.13) is satisfied,

a2

b2 =
H0

2

3Ms
2F2s0,Nd

fFsk,Nd + J„1 − cosskd… + 2Fs0,Ndg

S12 −
H0

2

Ms
2F2s0,Nd

DFsk,Nd −
2

3
JS H0

2

Ms
2F2s0,Nd

− 18Dcosskd + 24Fs0,Nd + 12J

. s4.17d

There is a double degeneracy due to the fact that fre-
quency does not depend on the sign of the wave vector. For
the case with only a dipole-dipole interaction the frequencies
vs the applied magnetic field is shown in Fig. 8. There is one
frequency which is independent of the applied magnetic field
(in Fig. 8, J=0):

v = 2gMsfJ + 2Fs0,Ndg. s4.18d

In Fig. 9 the dispersion dependence on the applied field is
shown.

In Fig. 10 we show the eigenfrequencies vs the applied
field for the case when, in addition to the dipole-dipole in-

FIG. 13. Eigenfrequencies of a “2 kink domain” state with non-
periodic boundary conditions;J=0, 21 dipoles.
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teraction, we have an exchange interaction withJ=10.
Figure 11 shows the eigenfrequencies vs the applied field

for nonperiodic boundary conditions(obtained numerically).
The remaining case is what we have previously called a

“domain” state. Figures 12 and 13 show the eigenfrequencies
vs the applied field for the case of periodic and nonperiodic
boundary conditions.

V. CONCLUSIONS

We have developed a method for finding the eigenfre-
quencies of an arbitrarily shaped body in the discrete dipole
approximation. The effects of exchange and anisotropy en-
ergy are easily incorporated. In this first paper we have ap-
plied the method to find analytic solutions for two simple
cases of a line of spins obeying periodic boundary conditions

which are dipole analogous of the well known Bloch spin
wave. The case of nonperiodic boundary conditions, for
which the eigenvalues were obtained numerically, was also
discussed.

Calculations on disks and spheres have been carried out,
which will be discussed in subsequent papers. Modes asso-
ciated with higher-dimensional objects will be discussed in
subsequent papers, as well as using this method to describe
the absorption properties and scaling approach, which allows
one to describe relatively large systems using far less spins
than the actual number of spins forming such systems.
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