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Resonant modes of dipole-coupled lattices
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A general method is developed to find the equilibrium magnetization and the eigenfrequees@want
mode$ associated with a magnetic body of arbitrary shape based on the discrete dipole approximation. In this
first of a series of papers the method is applied to the simple case of a line of dipoles with the magnetic field
both parallel and perpendicular to the axis of the line.
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I. INTRODUCTION model involvingN discrete dipoles, often called tliscrete

Studying the response to a microwave magnetic figjd  diPole approximationOne can also trivially add exchange
in the presence of a strong static magnetic fielg (e.g.  effects, which is not the case with the analytic approaches.
ferromagnetic resonance or FNIR a powerful technique to  The first attempt to use a discrete dipole approach for mag-
investigate the coherent dynamics of magnetic particlesnetostatic spin waves was done by Padditial® A disadvan-
Such experiments are typically carried out at frequencies otage of the discrete dipole approach is that, since it reduces to
the order of 1€° Hz. Domain switching in inhomogeneously an eigenvalue problem for which the size of the associated
magnetized bodies occurs at comparable rates. matrix is 2N X 2N, the eigenvalue routines ultimately down
Information about the exchange interaction, magnetic anbreak for large numbers of particles.
isotropy, and dissipation processes in bulk ferromagnets can Our approach involves a solution of the coupled Larmor
be obtained from the FMR technique. Size and shape play equations of the individual dipoles with all fields acting on
role in modifying the resonance modes of nanoscale ferrothem explicitly accounted fo¢dipole, exchange, and mag-
magnetic particles. The collective behavior of the magnetinetic anisotropy. It can be viewed as a discrete version of
zation also involves coupling of the precessing uniform magthe Landau-Lifshitz equation. For small oscillation ampli-
netization to the spin wave modégarticularly at high rf  tudes we can recast the problem as a system of linear equa-
drive levels. A detailed knowledge of how these phenomendions, where the eigen-frequencies are the resonant modes,
affect the modes may ultimately be of practical interest sinceand the eigenvectors are the relative amplitudes of excitation
dynamical switching studies may offer a faster writing tech-of the individual dipoles.
nology, while resonance probes may provide an alternative A natural question is how the modes of our discrete dipole
read technology. model relate to those of Walker. The case of simple cubic
Experiments on ferromagnetic resonance in ferrites havpacking within a sphere with a given radius roughly corre-
shown that under suitable conditions the power absorption aponds to the results obtained by Walker and Fletcher for a
a fixed frequency may pass through a number of maxima asontinuum sphere. An unavoidable problem that arises in try-
the dc magnetic field is varied. A necessary condition for theéng to make such a comparison is that the cubic packing will
excitation of these features is that the rf magnetic field at thalways be restricted to the symmetries of a cube, while the
sample be inhomogeneous. In experiments involving insulatanalytic continuum solution of Walker has the full symmetry
ing ellipsoidal ferrites the rf exciting fields are not expectedof the sphere. We have not as yet been able to devise a
to change rapidly over a small sample and the wavelengthsethod to unambiguously associate our eigenfrequencies
of the excited modes are generally comparable with the diwith those of the continuum model. It would be of interest to
mensions of the body. If exchange is neglected, these modgairsue this problem.
can be calculated, to a very good approximation, by using a An advantage of our approach lies in the fact that we can
magnetostatic conditiofyy X H=0, and hence they are called apply the method to particles of arbitrary shape, for which
magnetostatic modes. Mercereau and Feyrindentified a  analytical solutions cannot be constructed. This is particu-
few of the more simple distributions for a sphere, andlarly relevant for cylindrical- and disk-shaped nanopatrticles,
Walker calculated all the possible solutions for a spheroid.which are relatively easy to pattern experimentally and are of
The resulting modes were numbered by the indices of assanuch current interest. In recent years a few articles have
ciated Legendre polynomials and a periodic exponentiabeen published that discuss the dynamic properties of dis-
function. Fletcher and Bélf and Plumief carried out an crete dipole structureé$. There is also significant interest in
extensive analysis and numerical calculations for spherestudying the equilibrium configurations of magnetic struc-
providing tables for various solutions. The physical nature otures; however these works are not explicitly related to the
the magneto-static modes was later partially clarified by thgresent study.
work of Damon and Eshbach. Recently a technique was proposed to “scale” static dis-
Walker’'s analysis was formulated in terms of a crete dipole calculations for smaller size objects to describe
continuum-matter, magnetostatic boundary-value problemarger system&! Extending this to scale the dynamical prop-
In this paper, we explore a numerical approach based on erties discussed here would be of great interest.
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Il. MICROMAGNETICS STRATEGIES will limit ourselves to dipole-dipole and exchange interac-

. tions only.
Here we present our strategy to model the magnetic prop- We have used four different methods to find the equilib-

erties of magnetic nanostructures. rium configuration.

Only ellipsoids and degenerate forms thereof can have a (1) One approach s to perform a Runge-Kutta integration

uniform magnetization. All other shapes are nonuniformlyof the Landau-Lifshitz equation with a damping term and a

magnet!zed_. The exch.ange interaction .prefers to keep thr%ndom starting configuration. This method has numerous
magnetization of all spins parallel, but dipolar shape erfem%isadvantages

compete to make this direction position dependent in a non- (a) For long running times, one needs to introduce

ellipsoidal b_ody_. O’?e usually assumes thatmhmgnltudeo_f tricks in order to keep the magnitude of dipole moment con-
the magnetization is constant and we will assume this, al'stant

though this may not be the case for. .sma(ihear- (b) Unstable configurations that have no torque acting
superparamagnejiparticles or near the transition tempera- on the dipoles, unless some perturbation is introduced, can

ture. Our model is based on simply summing the magneti -
field from discrete, point dipoles that uniformly fill the body be m?gelﬁtiﬂagycgis rtehseer;ﬁu%fddigfemghd a few meta-

In question on some gritt The magnetic moment qf th_ese stable states can coexist. In such a case the final configura-
p_artlcles IS f|xed_ so as to reprodl_Jce the magnehzalu_bn tion depends on the initial configuration of the integration.
(i.e., the magnetic moment per unit volupa the body in (This will be discussed in detail in Sec. IV)E
guestion. Thus the field on a dipoids given by summing (2) A second approach is the Monté-CarIb method. With
oyerthe fields produced by the remaining dipolesyhich is enough samples a state very close to the true grouﬁd state
given by the usual form can be located. However this approach becomes very slow
_ 1 3r(m -r:)  m for more than a few dipoles.
hPole=> mj<V v (r_)) =2 {—”(—5]—”‘) - _31} (3) In the third approach we choose the initial directions
17 1 i# fi i randomly and rotate the dipoles so as to maximize the gra-
(2.1  dientin the energy. By moving to these directions, evaluating
the energy and again reorienting the dipoles so as to maxi-
ize the gradient, we may continue until the decrease in
energy drops below some preset value. This method gave us
mixed results—it worked well for some configurations, but
Nexchange™ S m. 2.2) in other cases it Wpuld become trapped in regions with very
NN small energy gradients for too long. As can be shown, for
i certain unstable configurations some external intervention is
The exchange constaditwould be adjusted to reproduce the required to force the system out of such traps.

experirr12ental continuum limit coefficient of the gradient (4) The most successful approach involved a relaxation-
energy:* Surface pinning will arise naturally since these mo-|ixe method. Here we start with a random configuration of
ments have no neighbors; it could be adjusted by alteding gpins. we then calculate the field at positioarising from

for surface or-near surface momenisn general needs to be Eq. (2.3. Then we align each magnetic moment parallel to

scaled according to the prescription used to discretize thge new local field. We continue this process of inserting the

To account for the exchange interaction we can add
second “effective” or “exchange” field on théh dipole of
the nearest-neighbor Heisenberg type:

body. . , moments intq2.3) and reorienting them until the local fields
The sum of the dipole, exchange and external fielg,  stabilize. This can be taken as the initiatuilibrium) mag-
acting on theith dipole is then given by netic configuration of the particles.
h; = hdipole . pexchangey 4 With this method one can occasionally become trapped by
I | I

repetitively jumping between two unstable configurations,
-3 3rij(m;-ry) m; + pexchange, |y 2.3 bu_t for most situationsf it prqved to be the fastest.and most
rifj? |~°J> ! o ' reliable. Unstable configurations with no torque acting on the
dipoles are highly improbable, and even small deviations
The crystalline anisotropy energy for the uniaxial case hasorce the system to walk away from them.

j#i

the form E_A=K_Sin2 6. The resultant torqueNa=dEa/ 36, As with the Runge-Kutta integrations, in the presence of
may be written in a vector form as metastable states, the final configuration depends on the ini-
- - tial, randomly chosen, starting point. However we are free to
N, = K(m “HAm X Ha quickly try new starting configurations.
2 1
n
I1l. FERROMAGNETIC RESONANCE
o K(M Hy)~ K(m-Hy) - The resonant modes follow from the solution to the Lar-
HE = = Ha, 2.4 i
A ] A 2 A (2.4 mor equation,
. - . . . % - _ Ve htotal 3.1
where the unit vectoH, points along the anisotropy axis; dt ym; i (3.9

for an easy axis systeis positive while for the easy-plane
system it is negative. In the examples treated in the article wiVe linearize the problem by writing
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m;=m® +m® (3.29
and
hi?® =h{® +h{®. (3.2b
Inserting these expressions into E8.1) gives
dm¥
=@ xhem® <), (33
where
hi(O) — h?ipole+ h;:-zxchange_'_ HO — E mJ(0)<V v (%))
j#i ij
+ hiexchange+ H0 (3.43
and

hi(l) - hidipole+ h?exchange: 2 mj(1)<v \v (%)) + hiexchangt.e
j#i ij

PHYSICAL REVIEW BO, 184410(2004

excited for a given drive field. One of the biggest advantages
of the method presented in this paper is that it allows one to
modify the original problem by assuming periodic boundary
conditions in some of the directions, or by performing some
sort of scaling, which allows one to work with millions of
spins formed into a few thousand superspins. The practical
implementation of such approaches will be discussed in fu-
ture papers. However it should be emphasized that the
Runge-Kutta method has the property that it is applicable to
the nonlinear regime.

Suppose we have obtained a positive-frequency solution
and the associated complex eigenvector:

(3.83

For the solution having the same magnitude of the frequency,
but with the opposite sign, we have

M = Myeq + Imimag-

(3.8b

i.e., we have the complex conjugate eigenvector. So the true

M = Myeq ~ imimaga

motion must be represented as

(3.4b) _ .
) m + 'm. e—lwt+ m _ 'm. e-Hwt
We assume a solution of the form (Mreai * IMimag (Mreai = IMimag
. = 2Mgq COSwt + 2Mjy50 SiN wt, 3.9
mi(l)(t) - mi(l)e"“‘t, (3.5) real imag (
which is a real quantity.
and Eq.(3.3) becomes
iomP = y[m@ x hY + m® x h(0]. (3.6
IV. CALCULATIONS
Using Eq.(3.4b we can write Eq(3.6) as o ) ,
For the sake of simplicity we will assume the particle
iom® =m0 x | S 3rij(m(1) i) mfi) + pexchange number along each direction to be odd and given(upper
i i < ri5_ ri3_ i case lettersN,, Ny, and N, where the total number of par-
J ! J ticles is thenN=N,N,N,; we identify the quantitiegN,,
+ymP X h?. (3.7 -1)/2 with the (lower casg letters,n,, n, andn,.

When we use periodic boundary conditions we “wrap” the

Equation(3.7) has the structure of a vector eigenvalue prob- i
4 (3.7 g b sample around itself so that

lem. The solutions should contain all tiigenerally mixedl
dipolar and spin-wave modes. By settiligO we can elimi-
nate the exchange-coupled spin wave modes. To solve Eq.
(3.7), one needs to rewrite the vector equation as a system @fssuming that the solutions of E(.7) are plane waves we
three coupled scalar equatioftbe x-, y-, andz-component have
projections of the vector equatipn

Since in our problem the magnitude of unperturbed mag-
netic moment is a constant, we actually only have 2 indepen-
dent components; hence by working with a set of coordinates My, +q=Mg; gy 2Nxy 2t = gkuy A9 g2mPxy,z
aligned with the equilibrium direction of each dipole, one o
can rewrite Eq(3.7) in a form involving only a A by 2N

My, +a = Mg- 4.1

matrix. Although the appropriate equations were obtained, kxyzzﬂy,_z, (4.2)
they were not implemented in the present study due to the - Ny.y.z
increased complexity of coding the expressions involved. As
a result one third of the eigenfrequencies returned using the Nyyz 1 22 s Nyyz =1 s
three-component form of the equations will be zero. Pove Jmin o max 2 XYz

An alternative to the eigenvalue approach is to directly Y
integrate the Larmor equation for an assembly of spins using, _ _

Pryz= "Ny zMxyz= 1, .. ,0, . Ny

say, the Runge-Kutta method. This is a powerful approach
and routines that perform this integration are availdble.  Here p,,, are integers with values fromng, , to +ny, .
disadvantage is that it does not yield the eigenfrequencie¥/hen these conditions apply the solutions are plane waves
directly, but only a large response to an external drive abut because of the imposed boundary conditions they will
specific frequencie¥ One needs to perform the calculation have a discrete spectrum. Note the minimum possible wave-
for a range of frequencies and not all of the modes will belength in the sample is &he lattice constant is equal t9.1
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~FIG. 1. F(k,N) as a function of wavevectok; N=2001 FIG. 2. Frequency as a function of wave vector with the sample
dipoles. parallel to the applied fieldy=1000,N=2001 dipoles.
A. Bloch spin waves we change the direction of propagation, we do not change

We can apply this formalism to the case where we have aihe frequency of the wave.
exchange interaction with an external magnetic field applied
along thez direct_ion, but no dipole-dipole interact_ion. In this B. Modes of a dipole-dipole coupled line parallel to an
case the local field is parqlle! to the external f|9|d and the external field: Periodic boundary conditions
solution for the case of periodic boundary conditions has the
form We will apply the above model to calculate magnetostatic
. Lo resonance modes, or dipole spin waves, for the simple case
miP(xy) = +iglelovele; mU(xy) = el m, of a line of atoms with tﬁe ma%netic field both parallgl and
=0. 4.3 perpendicular to the line. We do this for the case of a line
with free ends as well as one satisfying periodic boundary
Using Eq.(3.7) and taking thex, y, andz coordinates to be ¢gnditions.

discrete, and a lattice constant equal to 1, we have We choose a coordinate system such that all the spins lie
© along thez-axis. The component of the eigenvectors parallel
—kxghygkz =M D (= JekHiky ke to the applied field vanishes, so that the oscillations are con-
Y r’#r,NN fined to thex-y plane. Equatiorn3.7) then takes the form
ek Hor M3 ) -
o) i
" w5 [+ 1) oz -, -t |
(4.4) SO
4M
1
— @ dkxgikyyeikzz = My D (Jele iy +ikz) + mi(y)<H0+ 12N ( |235>)'
z=1.N,
Y r’#r,NN

_ eikxx+ikyy+ikzZ(HO + MY, J>, md
o) '
NN i—my) = Ms(E (' 3 ) - Jmy - mit, - mfi1+)1>x)>

where My is the saturation magnetization ahl is the ex- i AT

ternal magnetic field; the sum is performed among nearest H aM

neighbors only. The resulting frequencies are then mix M = \|1z#)) (4.
S z=1..N;

o= yHg+ MgyJ[6 — 2 cogk,) — 2 cogk,) — 2 cogky)),
If we assume a periodic boundary condition, we can solve
w =~ yHo+ YIMKZ, (4.5) ]Ehese equations analytically in terms of the plane wave

orms:

which is a well known formula for Bloch spin waves. The

moments associated with these waves have a constant tip- D = deakz. D5 = dkz

ping angle but different relative phases. All modes, with the m,"(2) = e¥e™ m(2) = e, @7

exception of one wittk,=k,=k,=0, have degeneracies—if From this we obtain
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perpendicular to the field N 1
15 > ( ) F(O,N)
] d=1
-2.0
o =2yMJF(k,N)
-2.5
+ yMAF(0,N) + yHy + 2yMJ(1 - cogk)).
- 30 Figure 1 shows the behavior of the functi6iiN,k) as a
Ié 25 function of k.
’ Hereafter for the figures we will assume for simplicity,
40 v=1, Mg=1, a=1. The dispersion curve is given in Fig. 2
(positivek only).
4.5
C. Modes of a dipole-dipole coupled line perpendicular to
50 ' ' . . ' ' an external field: Periodic boundary conditions
0.0 0.5 1.0 1.5 2.0 25 3.0

Here we only treat the case where the field is sufficiently
k high that in equilibrium the spins are essentially aligned
FIG. 3. Frequency as a function of the wave vector with thealong _the appligd magnetiq fieldhis r?qu”es field_s above
sample perpendicular to the applied fieli= 1000, N=2001 di- '27.2 in our umt;, the Iow-ﬂgld behavior will be dlscyssed
poles, H=10. in Sec. IV E. Unlike the previous case, where the orbits were
circular, here they are in general elliptical.
Similar to the previous case we obtain

e2l<p:_1. (P:E
! 2’ I_ (1)_MSE< fT]( )
ll

j#i
eik(z’—z) 2 ) 1 1
0= M, S St o Hor M, S 5 | + M2 - e iy Hot M - 55+ .
Z/#z 7'z 7'#2'72 171 g
-, b m
Y IEdl r‘|J |J
@2 N codk(z —2)) < cos(kd) 1
D=2 | o)=Y ~mD Ho+ MY | = = + 3] | 4.9
(Z _Z) 1X 3
7+z Y7z X' —x=1 d=1 j#i Fij
=2F(k,N), (4.8)  wheredy, appears only in the sum among nearest neighbors.
124
1.0-
0.8-
06
04
02
0.0- W Ad S
-0.2—-
-0.4-
'0-6'|'|'|'|'|'|"-‘7~ ’"""|'|'|'|'|'|'|'|'|
1 2 3 4 5 6 7 © 292 293 294 295 296 297 298 299 300

z
FIG. 4. Amplitude as a function of for an “end” mode; 1500 dipoles.
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FIG. 5. Mode amplitude as a function of dipole coordinafer
the “bulk-pi” mode;N=300 dipoles.
We now seek solutions of the form
mg(l)(x) = aeikx;

rn;l)()() — bei(peikX; (410)

in this casea?/b? is a measure of the ellipticity of the orbits.
Using the fact thatF(k,N) is always real, and from two

PHYSICAL REVIEW B 70, 184410(2004)

(a)

/1777777777777 777

(®)

I ~ON NS

NS

FIG. 7. Example of low-field equilibriums occurring in a line
perpendicular to the external magnetic figld) Ground state(b)
“domain” state.

////

w?= szg{ZF(k, N) + 2J(1 - cogk)) + % - 2F(0,N)]

X [— 4F(k,N) + 2J(1 - cogk)) + % - 2F(O,N)}

(4.1

whereF(k,N) was defined in the previous section.

At high fieldsa?/b? approaches 1, approximately asHb/
implying that the orbits are circular in this limit.

Since F(k,N) changes sign fok=/2, a®/b’-1 also
changes sign at this point and modes with smalldrave

possible values for'&, we choose the one corresponding toa>b, with the semi-major axis of oscillation aligned with

positive frequencies.
The solution is

_m,
QD 21
al 6F(k,N)
72:1+ H !
— 4F(k,N) + 2J(1 - cogk)) + MO - 2F(0,N)
S
10 36 63 90 117 144 171 198 225 252 279
0.5+
w 0.0 4
-0.5 -
-1.0 +
22 49 76 103 130 157 184 211 238 265
0 ' 5I0 1(IJO 1&0 2(I)0 2&0 360

z

FIG. 6. Mode amplitude as a function of dipole coordinafer
the “bulk” mode;N=300 dipoles.

the sample axis; modes with largkrhavea<b, and have
the semi-major axis of oscillation perpendicular to the
sample axis. The dispersion relation is shown in Fig. 3.
Again, all modes but the one witk=0 are degenerate for
forward and backward traveling waves.

D. Modes for a dipole-dipole coupled line parallel to an
external field: Nonperiodic boundary conditions

We start with Eq(4.6), but this time there are no bound-
ary conditions, i.e., no artificial “wrapping” of the line. In

-1 T T T T d T d T T T

0 1 2 3 4 5 . 6
H,/F(O.N)

FIG. 8. 21

dipoles.

Eigenfrequencies of a low-field ground staie;0,
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— HIFON)=5.8 84
65+ e H/F(0,N)=4.75
............................ H/F(0,N)=3
804 -
5.5
4 6 -

e
—_—
e ——

o 12 3 4 5
FIG. 9. Dispersion curves of a low-field ground state and differ- H /F(O,N.)
ent values of the applied field=0, 1001 dipoles. ¢ X

FIG. 11. Eigenfrequencies of a low-field ground state with non-
this case the local magnetic field is a function of a coordinateeriodic boundary conditionsgl=0, 21 dipoles.
z and we cannot obtain a simple solution in terms of plane

cally. _ waves with circular(constant tipping ang)eorbits, as pre-
In this case the solution can be represented as sented in Fig. 6.
M(2)=iF(2), MP(2 =F(2) (4.12
my s My ’ ) E. Modes of equilibrium states in the presence of a weak

Solving for F(z) numerically we find that there are three external field
types of oscillations present in the system. . . -
One of these we refer to as “pi-modes” which are charac- For the case where the external field is insufficient to

ered by a phase S of betueen negnborig dpoles. 10" o SP parale o 1 dfeent configuatons ocur
However there are two types of “pi-modes”—"“end” symmet- P '

ric and anti-symmetric modes that exist only close to thelWo cases: In one case the lowest energy state corresponds to

ends of the ling(Fig. 4—this type of oscillation was first all dipoles tipped at a constant angle in the plane defined by

reported by Politiet al®), and which exponentially decrease ;E.heel dexterr;gl gﬁidtﬁnd.th?hléniax[ﬂg' 615?52?)2?0 ?;(tt%r:ala”
inside the sample. We also find “bulk pi modes” which are ! IS pres IS 1S Y possi lguration—

characterized by a periodic envelogég. 5). dipoles are parallel to the line axis. We should mention that

8 =
50 -
45
40-_ 6.
35 - —
30 z
25 e — 44
e ] 5 8 -
20
15 4
L 24 \’"/
10 -
5. ]
] N /——-—‘\
1 1 1 T 1 M 1 T 1 M v M I M 1 M Ll M 1
0 1 2 3 4 5 6 05 1.0 1.5 20 25
H,/F(O.N) H,/F(O,N,)
FIG. 10. Eigenfrequencies of a low-field ground stdte10, 21 FIG. 12. Eigenfrequencies of a “2 kinks domain” state with
dipoles. periodic boundary conditionsi=0, 21 dipoles.
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104 The ground state appears when the expression for the fre-
quency given in Eq(4.11) gives a complex result:
" <o (3
m < 62}1 &)
6 -
(4.13
8 4 m<6F(0,N).
— Ms
] T Requiring that dipoles should be parallel to the local mag-
netic field, we have
0 o Ho
sing BMF(ON)’ (4.19
I
2 wheree is the angle between the dipoles and xhexis. The
H/F(O,N) energy per dipole in this case is a constant:

FIG. 13. Eigenfrequencies of a “2 kink domain” state with non- E =~ 4AMF(O,N) (4.15
periodic boundary conditionsh=0, 21 dipoles. ST '
since all dipoles have the same direction, the exchange intefhe modes of such a system are given by
action plays no role. m = agkx

Another possibility is what we can call “domain” states, x ’
shown in Fig. Tb); as can be seen, one or more kink-like (1) ik
structures form, separating regions where groups of dipoles My = ibe™, (4.16
align anti-parallel to those in neighboring regions. This kind
of configuration forms only in dipole-dipole, and not ex- 1 _ (1)\/36M§F2(0,N) _1
change, dominated samples. Inietastablewith the energy Mz’ =~ M Hg
exceeding that of the ground state by approximately 11 en-
ergy units per kink. It does not exist if the applied field is Then
either too strong or too weak to sustain it. More than one VYL
“domain” state(with different numbers of kinkscan form at w?= —2[F(k,N) + J(1 — cogk)) + 2F(0,N)]
the same time; however when periodic boundary conditions 3
are applied, only configurations with an even number of H(Z)
kinks are possible. - (12 —m)F(k,N)

We also mention that there are a number of unstable states s N)
for which the dipoles are oriented parallel to the local mag- 2 H2
netic field and as a result experience no torque; but a small - 53 m - 18]cogk) + 24F(0,N) +12] |,

perturbation will force the system out of such configurations.
It is noteworthy that these states have complex eigenvaluesvhich is always positive if Eq(4.13) is satisfied,

a? HZ [F(k,N) +J(1 - cosk)) + 2F(0,N)]
2= anr2e2 2 2 : (4.17
b= 3MZF<(0,N) Hp 2 H§
12 - ——=——|F(k,N) = ZJ| —5— —— —18|codKk) + 24F(0,N) + 12]
MZF<(0,N) 3 \MZF<(0,N)
[
There is a double degeneracy due to the fact that fre- w=2yMJ{J+2F(0,N)]. (4.18

guency does not depend on the sign of the wave vector. For _ ) ) o
the case with only a dipole-dipole interaction the frequencies In Fig. 9 the dispersion dependence on the applied field is
vs the applied magnetic field is shown in Fig. 8. There is oneshown.

frequency which is independent of the applied magnetic field In Fig. 10 we show the eigenfrequencies vs the applied
(in Fig. 8,J=0): field for the case when, in addition to the dipole-dipole in-
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teraction, we have an exchange interaction Wit 0. which are dipole analogous of the well known Bloch spin
Figure 11 shows the eigenfrequencies vs the applied fieldvave. The case of nonperiodic boundary conditions, for
for nonperiodic boundary conditiogebtained numerically ~ which the eigenvalues were obtained numerically, was also
The remaining case is what we have previously called aliscussed.
“domain” state. Figures 12 and 13 show the eigenfrequencies Calculations on disks and spheres have been carried out,
vs the applied field for the case of periodic and nonperiodiavhich will be discussed in subsequent papers. Modes asso-
boundary conditions. ciated with higher-dimensional objects will be discussed in
subsequent papers, as well as using this method to describe
the absorption properties and scaling approach, which allows
one to describe relatively large systems using far less spins
We have developed a method for finding the eigenfrethan the actual number of spins forming such systems.
quencies of an arbitrarily shaped body in the discrete dipole
approximation. The effects of exchange and anisotropy en-
ergy are easily incorporated. In this first paper we have ap- We would like to thank A. Garg and V. Chandrasekhar for
plied the method to find analytic solutions for two simple discussions. This work was supported by the National Sci-
cases of a line of spins obeying periodic boundary conditiongnce Foundation under Grant No. ECS-0224210.
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