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Abstract

Further development of a previously introduced method for numerically simulating magnetic spin waves is presented. Together with

significant improvements in speed, the method now allows one to calculate the energy absorbed by the various modes excited by a

position- and time-dependent H1 field in a ferromagnetic body of arbitrary shape in the presence of a (uniform or non-uniform) static H0

field as well as the internal exchange and anisotropy fields. The method is applied to the case of the single vortex state in a thin disc,

a ring, and various square slabs, for which the absorption spectra are calculated and the most strongly excited resonance modes

are identified.

r 2006 Published by Elsevier B.V.
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1. Introduction

Over the last few decades a number of methods have
been proposed that enable one to calculate the frequencies
and spatial dependencies of the magnetostatic resonance
modes of a ferromagnetic sample. While most models are
macroscopic [1,2], a microscopic model was proposed by
Politi et al. [3] and subsequently used (for example by
Nortemann et al. [4]) to study ferromagnetic resonances in
various objects. In this model a macroscopic body is
approximated by an array of magnetic dipoles, which are
viewed as ‘‘block spins’’ representing an average over many
crystallographic unit cells, rather than true microscopic
spins. For disturbances with wavelengths large compared
to a block-spin spacing we expect the method to provide a
reasonable representation of the associated excitations.

Another interesting method has been developed by
Kamenetskii [5]. However, this method does not provide
- see front matter r 2006 Published by Elsevier B.V.
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a description of how such objects interact with an applied
position- and time-dependent H1 magnetic field; i.e., which
modes are excited, what is the amplitude of each
excited mode, and how the absorption depends on the
applied fields.
The approach generally chosen to answer the latter

questions has been to implement a Runge–Kutta-like
scheme to integrate the Landau–Lifshitz–Gilbert equation
of motion for an ensemble of spins (as for example in the
work of Jung et al. [6]). This method has numerous
advantages: it enables one to see the complete time
evolution of the system starting with some initial condi-
tions, and to utilize external fields having some specific time
dependence as, e.g., in spin-echo experiments. It also has
numerous disadvantages—it is relatively slow and only
permits one to analyze a single frequency of the external
driving field in a given run; any change requires the whole
calculation be repeated.
Searching for a method that does not suffer these

disadvantages has led to a revival of interest in using an
eigenvalue-based formulation of the spin wave problem.

www.elsevier.com/locate/jmmm
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Indeed, in the past year alone, together with attempts to
use the ideas of Politi et al., two new methods have
appeared—a method introduced by the authors [7], and a
somewhat similar method by Grimsditch et al. [8]. We note
that an analogous technique, referred to as the ‘‘discrete
dipoles method’’ has been widely used in optics in recent
years.

The most severe limitation of the eigenvalue-based
approaches is that, unlike the Runge–Kutta approach,
they cannot be used in the non-linear regime.

2. Finding the resonance frequencies and modes

We begin with a brief review of our basic formalism (a
more detailed discussion is given elsewhere [7]). We recall
the Landau–Lifshitz equation in the presence of a
dissipative Gilbert term:

dmi

dt
¼ �gmi � htotali �

bg
Ms

mi � mi � htotali

� �
, (2.1)

here mi is the magnetic moment of the ith spin, g is the
gyromagnetic ratio, and b is a parameter governing the
dissipation; henceforth a ‘‘spin’’ or ‘‘discrete dipole’’ can
imply a variety of objects, from discrete dipoles per se, to
close-packed uniformly magnetized prisms. The strategy is
to linearize the problem by writing both the applied fields
and magnetic moments as the sum of a zeroth-order static
part and a small first-order time-dependent perturbation:

mi ¼ m
ð0Þ
i þm

ð1Þ
i ðtÞ, (2.2a)

hi ¼ h
ð0Þ
i þ h

ð1Þ
i ðtÞ. (2.2b)

With such a representation, the linearized form of Eq.
(2.1) is given by

�
dm
ð1Þ
i

dt
¼ g m

ð0Þ
i � h

ð1Þ
i þm

ð1Þ
i � h

ð0Þ
i

h i
þ

gb
Ms

m
ð0Þ
i

� m
ð0Þ
i � h

ð1Þ
i þm

ð1Þ
i � h

ð0Þ
i

h i
. ð2:3Þ

We assume a solution of the form

m
ð1Þ
i ðtÞ ¼ m

ð1Þ
i e�iot, (2.4)

where

o ¼ o0 � ibo00, (2.5)

here o and m
ð1Þ
i are, respectively, the eigenvalue and

eigenvector of Eq. (2.3) and can be obtained by solving
Eq. (2.3). For b ¼ 0, corresponding to the dissipationless
case, the eigenvalues o will be real, provided the zeroth-order
spin directions have been relaxed to their stable equilibrium
directions. Note the orbits of the oscillations become
progressively more circular as the external field increases.

Due to the fact that we use a complex form to represent
the physical moments, which are real, any solution of
Eq. (2.3) with a positive o0 and eigenvector m

ð1Þ
i , will be

accompanied by a second solution with eigenfrequency
�o0 and eigenvector m

ð1Þ�
i .
The fields entering Eq. (2.3) are given by the formulas:

h
ð0Þ
i ¼ h

dipole
i þ h

exchange
i þH0 ¼

X
jai

m
ð0Þ
j rr

1

rij

� �� �

þ h
exchange
i þH0 ð2:6Þ

and

h
ð1Þ
i ¼ h

dipole
i þ h

exchange
i ¼

X
jai

m
ð1Þ
j rr

1

rij

� �� �
þ h

exchange
i ,

(2.7)

which account for both the dipole–dipole and exchange
interactions; it is straightforward to add anisotropy energy
terms. In the present paper we restrict the exchange
interaction to nearest neighbors only; i.e.,

Hexchange ¼ J
XNN

i

mi, (2.8)

where

J ¼ 2
AGauss

M2
s a2

. (2.9)

We earlier used three complex numbers to describe the
individual oscillations at each of the sites i. [7]. However in
the linear regime, spin precession can be represented by an
ellipse lying in a plane perpendicular to the equilibrium
direction of the magnetic moment, a description of which
requires only two complex numbers. One way to reduce the
initial eigenvalue problem from 3N� 3N to 2N� 2N is to
transform all magnetic moments to local coordinates, in
which the z-axis coincides with the equilibrium direction of
the magnetic moment at this point:

m
ð1Þ
ia ¼

X
b

Aiabm
ð1Þ0

ib , (2.10)

where

Aab ¼

cos bd cos a � sin a sin bd cos a

cos bd sin a cos a sin bd sin a

� sin b 0 cos b

0
BB@

1
CCA,

cos a ¼
m
ð0Þ
ixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
ð0Þ2

ix þm
ð0Þ2

iy

q ; sin a ¼
m
ð0Þ
iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
ð0Þ2

ix þm
ð0Þ2

iy

q ,

cos b ¼
m
ð0Þ
iz

m
ð0Þ
i

��� ��� ; sin b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ð0Þ2

ix þm
ð0Þ2

iy

q
m
ð0Þ
i

��� ��� ,

A�1ab ¼ AT
ab. ð2:11Þ

Then Eq. (2.3) can be rewritten as

iom
ð1Þ
ia ¼

X
j;b

gBijabm
ð1Þ
jb ,

iom
ð1Þ0

ia0 ¼
X
j;b

gB0ija0b0m
ð1Þ0

jb0 ;

B0ija0b0 ¼ A�1ia0aBijabAjbb0 . ð2:12Þ
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Another problem associated with the eigenvalue method
is that every new spin (or cell) added to the system
corresponds to a new mode. On the other hand, accurately
describing the shape of a body requires a fine discretization
(and hence a large number of spins). On the other hand,
experimentally we can typically observe only the longer
wavelength modes. The simplest way to restrict to these
longer wavelength modes is to use ‘‘spatial averaging’’:
assuming that certain cells oscillate in basically the same
way (or that the resonance modes we are interested in are
locally uniform), we can group these cells into bigger cells,
later referred to as ‘‘macro-cells’’, with an averaged
behavior assigned to each of the macro-cells.

We write Eq. (2.3) as

iom
ð1Þ
ija ¼

X
j;b

gBiji0j0abm
ð1Þ
i0j00b, (2.13)

where we identify each individual cell with two integers: i

corresponds to the macro-cell, and j to the position inside
the macro-cell. Then, using the assumption of nearly
uniform behavior within each macro-cell,

m
ð1Þ
ij ¼ m̄

ð1Þ
i ,

om̄ð1Þi ¼
X

i0

1

Ni

B0ii0m̄
ð1Þ
i0
,

Bii0 ¼
X

j

X
j0

Biji0j0 , ð2:14Þ

where Ni is number of cells within macro-cell i.
We note that it is not necessary for the macro-cells to

contain the same number of individual cells (‘‘spins’’). For
example when we have a spherical object approximated by
cubic cells, macro-cells on the boundaries will provide for a
high discretization at the boundary, thereby providing a
smoother boundary, which would look more ‘‘pixilated’’ if
we simply used larger cells. This method proved to be
extremely effective when studying modes in thin structures
(slabs, discs, etc.) that are uniform along the sample
thickness; a comparison of the calculated absorption
spectra showed that no significant errors are introduced
by this method, and that it is far superior to simply using
the larger cells. However, this method should be applied
cautiously when the nature of modes is unknown; for
example in a highly non-uniform vortex structure the
method can potentially destroy the influence that
the vortex core has on the modes, seriously changing the
nature of the resonance spectrum.

3. Calculating the response to an applied time-dependent

magnetic field

A very brief sketch of our theory was published earlier
[9]; however, to provide the necessary back ground for the
calculations to be presented here we will require a more
complete description. After solving Eq. (2.3) for the
eigenvectors V

kð Þ
i and the corresponding eigenvalues o(k),

we must then ask how the various modes of oscillation can
be excited by applying a time-dependent external magnetic
field. In the presence of this dynamic field, Eq. (2.3) can be
written in a matrix form as:

� ioðkÞV ðkÞia ¼ gB0ijabV
ðkÞ
jb ,

dm
ð1Þ
ia

dt
¼ gB0ijabm

ð1Þ
jb þ gia,

gia ¼ �g m
ð0Þ
i � h

ðrfÞ
i

� �
a
¼ �geabwm

ð0Þ
ib h
ðrfÞ
iw , ð3:1Þ

here and in what follows we employ the summation
convention, roman letters correspond to individual dipoles,
greek letters correspond to coordinates.
We can transform this system to a simpler one

m
ð1Þ
ia ¼ Piakyk Piak ¼ V

ðkÞ
ia P�1iak ¼ V

ðkÞn
ia P�1P ¼ 1,

ykðtÞ ¼ el
ðkÞtck þ el

ðkÞt

Z
e�l

ðkÞt
X

i;a

P�1iakgiaðtÞdt, ð3:2Þ

where lðkÞ ¼ �ioðkÞ is an eigenvalue of a homogeneous
system. We consider only the case where the applied rf field
has a sinusoidal time dependence:

giaðtÞ ¼ giað0Þe
�iot

ykðtÞ ¼ el
ðkÞtck þ el

ðkÞt e
�lðkÞte�iotP�1iakgiað0Þ

�lðkÞ � io
. ð3:3Þ

The steady-state solution is:

ck ¼ 0,

m
ð1Þ
ia ¼ Piakyk ¼ iV

ðkÞ
ia

V
ðkÞn
lb gebswm

ð0Þ
ls h
ðrfÞ
lw

oðkÞ � o
e�iot: ð3:4Þ

We can define a magnetic susceptibility by writing

m
ð1Þ
ia ðtÞ ¼ wijabh

ðrfÞ
jb e�iot, (3.5)

where

wijab ¼ ig
X
Z;s;k

V
ðkÞ
ia

V
ðkÞn
jZ eZsbm

ð0Þ
js

oðkÞ � o
h
ðrfÞ
jb : (3.6)

Since physical magnetic fields are real, rf magnetic field
must be represented as a sum

m
ð1Þ
ia ðtÞ ¼ V iak C

ðoÞ
k e�iot þ C

ð�oÞ
k eiot

� �
, (3.7)

C
ðoÞ
k ¼ igV

ðkÞn
ia eabwm

ð0Þ
ib

h
ðrfÞ
iw

oðkÞ � o
,

C
ð�oÞ
k ¼ igV

ðkÞn
ia eabwm

ð0Þ
ib

h
ðrfÞn
iw

oðkÞ þ o
. ð3:8Þ

Keeping in mind that we always have complex conjugate
eigenvectors, we label those associated with an eigenfre-
quency having a positive real part with positive k, and
those associated with a negative real part with negative k;
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we may then write

C
ðoÞ
�k ¼ C

ð�oÞn
k ,

V
ð�kÞn
ia ¼ V

ðkÞ
ia ,

oð�kÞ ¼ �oðkÞn. ð3:9Þ

Since C
ðoÞ
�k is always off-resonance, and therefore is

extremely small we can write

m
ð1Þ
ia ðtÞ ¼ V iak C

ðoÞ
k e�iot þ C

ð�oÞ
�k eiot

� �
� Re

k40
ViakC

ðoÞ
k e�iot

� �
. ð3:10Þ

Note that the applied H1 field need not be uniform and
may have any spatial dependence consistent with the
magnetostatic conditions = � B ¼ 0 and =�H ¼ 0. The
same holds for the static field, H0.

Recalling the thermodynamic expression for the change
in magnetic energy [10], we may write the absorption as

_E ¼ 2 lim
t!1

1

t

Z X
i

dmi

dt
�Hidt ¼ oW

X
i

Im m
ð1Þ
i � h

ðrfÞn
i

� �
,

(3.11)

where W is the volume occupied by a single dipole. This can
be shown to be proportional to hðrfÞ

� �2
; all the quantities

occurring in these formulas can be found by using the
method given in previous section, which gives

_E ¼ oWg Re �
V
ðkÞn
lb ebswm

ð0Þ
ls h
ðrfÞ
lw

o� o0 kð Þ þ ibo00 kð Þ
V

kð Þ
ia H

ðrfÞn
ia

 !
. (3.12)

This formula can be used to calculate the absorption as a
function of both the frequency of the rf field and the
strength of the static magnetic field. Note that the quantity

ak ¼ V
ðkÞn
lb ebswm

ð0Þ
ls h
ðrfÞ
lw V

kð Þ
ia H

ðrfÞn
ia (3.13)

plays the role of an oscillator strength—it can be calculated
separately; for a given o _E then involves only a single sum
in Eq. (3.13). Absorption is determined by the imaginary
part of oscillator strength, with the sign chosen in such a
way that positive values of the imaginary parts of oscillator
strength and positive values of _E corresponds to absorbed
energy.

It is easy to see that symmetric fields excite mostly
symmetric modes and anti-symmetric fields excite mostly
anti-symmetric modes—otherwise the sum in Eq. (3.13)
vanishes. It can also be shown that the width of the
absorption lines is proportional to bo00.

Depending on the initial configuration of the system, one
can identify three distinct cases:
(a)
 All oscillator strengths correspond to positive absorbed
energy. This means that the system is in equilibrium. If
a small rf field is applied to the system, it moves to a
dynamical steady-state configuration for which the
energy absorbed by the system equals the energy
received from the field. It is possible that due to
discretization errors some of the oscillator strength will
be slightly negative, even when the system is initially at
the equilibrium, however the value of these oscillator
strengths will be many orders of magnitude smaller
than the value of oscillator strengths for the most
excited modes.
(b)
 Some of oscillator strengths have negative imaginary
parts, but all the imaginary parts of the eigenvalues are
negative. The system is then not in the equilibrium.
Applying rf fields that excite the modes with negative
oscillator strengths will move the system away from the
initial configuration, raising the system energy in the
process.
(c)
 Some of the imaginary parts of eigenvalues are positive.
The system is intrinsically unstable. Excitation of
modes with positive imaginary parts of eigenvalues
leads to divergent behavior.
There has been much interest in the past decade in devices
that exploit charge currents having an accompanying spin
current (the broad field being now referred to as Spintronics).
Here we restrict to a specific class of such devices involving
the injection of a spin-polarized current into a ferromagnetic
sample. To describe the resulting interaction between the
magnetization and the spin current one can introduce a
phenomenological term in Landau–Lifshitz equation so as to
yield a semi-classical description (quantum mechanical
models can be constructed which yield the adopted form
[11]). With this additional term the Landau–Lifshitz equation
can be rewritten as

dm

dt
¼ �gm� h, (3.14)

h ¼ htrue þ
m

Ms

� bhtrue � hJ

� �
, (3.15)

where h is an effective magnetic field involving: htrue (the sum
of the external, exchange, and anisotropy fields); the effects
due to damping; and a field hJ arising from the spin-
polarized electrical current. The interaction between the
magnetization and the electrical current has here been
modeled as a spin transfer torque [12–16],
ðg=MsÞm� m� hJð Þ, where hJ ¼ aJm̂J , m̂J is a unit vector
the direction of spin polarization, and aJ is an empirical
factor measuring the strength of the coupling (in units of
magnetic field4 where 1000Oe corresponds to 108A/cm2).
The excitation of spin waves due to a current then

involves an effective h1 excitation field of the form

h1 ¼ �
m� hJ

Ms

. (3.16)

The contribution to the specific heat due to spin waves
can be obtained by the standard prescription of assigning
an energy Ei ¼ _oi to each mode with the occupation
weighted by the Bose factor,

Pðoi;TÞ ¼
1

e_oi=kT � 1
. (3.17)
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Fig. 1. Absorption spectrum for: a disk (D ¼ 175nm, L ¼ 25 nm), ring

(D ¼ 175nm, inner diameter 35 nm, L ¼ 25 nm) and a square

(150� 150� 25 nm); the rf field is uniform and in-plane (along a principal

axis for the square).
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The resulting expression for the energy is then given by
the usual form

EðTÞ ¼
XN

i¼1

_oi

e_oi=kBT � 1
, (3.18)

where kB is Boltzmann’s constant and N is the total
number of spin waves (determined by appropriate scaling
of the number of dipoles used in the calculation); the
specific heat is then

CðTÞ ¼
qE

qT
¼
XN

i¼1

kB
_oi

kBT

� �2
e_oi=kBT

e_oi=kBT � 1
� �2 . (3.19)

It may be of interest to examine deviations from the bulk
specific heat that arise in arrays of nano-particles using this
computational approach (which intrinsically includes sur-
face effects).

4. Application to magnetic nanodots

We have applied the method described here to calculate
the absorption spectra and resonant modes in four
representative magnetic nanodots: a disk, D ¼ 175 nm
outer diameter, L ¼ 25 nm thickness; a ring, D ¼ 175 nm
outer diameter, inner diameter 25 nm, L ¼ 25 nm thickness
and a square slab 150� 150� 25 nm. In all cases we chose
permalloy as the material, which has the following
parameters: saturation magnetization Ms ¼ 795 emu=cm3,
exchange stiffness A ¼ 1:3� 10�6 erg=cm, and damping
coefficient g ¼ 0:01. For individual cells we chose
2.5� 2.5� 2.5 nm blocks, followed by averaging over the
sample thickness, which corresponds to studying only the
modes that are uniform in the direction perpendicular to
the plane of the disc.

Consider the case where no external dc magnetic field is
present; the equilibrium configuration in this case is then a
so-called vortex state, which has been described previously
in some detail [17–19]. It is characterized by a localized
structure (the vortex core) in the center of a circular or
square slab where the spins mostly point out of the plane of
magnetization, whereas the remainder of the spins lie on
closed loops around the core. In rings the core is absent,
rest of the sample having a distribution of magnetization
similar to that in disks. A plot of the absorption for the
above mentioned samples in a uniform rf field applied in
the sample plane is shown in Fig. 1.

Disks and squares exhibit an extremely low frequency
mode, well separated from the rest of the spectrum. This
mode corresponds to an oscillation of the vortex core, and
is traditionally called a ‘‘Gyroscopic mode’’. The properties
of this mode have been studied theoretically, experimen-
tally and numerically by many authors [20–25].

We calculated the frequency of the gyroscopic mode as a
function of the disk diameter, with the diameter to
thickness ratio held constant at D=L ¼ 10. The calculations
resulted in the frequency of the gyroscopic mode decreas-
ing slightly with the increasing disk diameter; for given
parameters it is approximately equal to 0.8GHz. To
examine the effect of discretization errors, we increased
the number of dipoles by the factor of 2 with the result that
the frequency changed by only 0.2%.
The behavior we obtain for the frequency of the

gyroscopic mode is to some extent consistent with the
theoretical predictions of Guslienko [21] and the experi-
mental results of Park [23], who reported it to be in the
range of 0.6GHz, with the difference possibly attributed to
our choice of the D/L ratio. However it is inconsistent with
calculations by Hertel [24], where a much lower value,
0.2GHz was given. It is also quite different from some
theoretical treatments, which predict a rapid decrease
in the frequency as D increases; for example according to
Ivanov [20]:

f ¼
1

2p
4pgMs

2l0

D

� �2 L� 1

Lþ 1

� �
,

L ¼
DL

4pl20
ln

2D

L

� �
, ð4:1Þ

where l0 is effective exchange length—about 4.8 nm for
permalloy. As can be seen, this formula gives values for the
frequency that are a few times (around 0.1GHz vs.
0.8GHz) lower than those resulting from our calculations.
The remainder of the modes for the disk can be

approximately described by the expression:

mð1Þ ¼ eimjF nðrÞ, (4.2)

where j is in-plane angle, m and n are integers, and Fn(r) is
a function of the distance from the center of the disk
[14,16]. In our case we achieved good agreement with the
theory, in particular concerning the spatial distribution of
the oscillations and the dependence of the frequencies on
the disk diameter. There are two important exceptions:
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Firstly, the oscillations do not disappear at the boundaries
(a similar result was reported by Giovannini [25]).
Secondly, some of the modes with odd symmetry do not
form doublets (theory predicts that the frequency depends
only slightly on the sign of angular mode number m, the
only dependence being due to the existence of the vortex
core). This is due to the fact that we used square lattice in
our numerical simulations, and therefore the modes with
different orientation with respect to the lattice axis have
different frequencies. It should be noted that nearly all of
the modes excited by the in-plane rf field have non-zero
amplitudes in the vortex core—this is because in the vortex
core the oscillations are confined to the plane of the disk
and therefore can very effectively couple to the in-plane rf
field. Also, the modes with even m appear as standing
waves, with eimj in Eq. (4.2) replaced by cosine and sine
functions, but modes with odd m appear as rotating waves.

In Figs. (2I–III) we show the most strongly excited mode
for the disk; the images are completely consistent with
experimentally obtained images reported by Zhu et al. [26].
Here and in the following graphs, only the z projection of
the modes is being depicted, with various colors corre-
sponding to the magnitude of the oscillations. Note that
opposite sides of the sample are magnetized in opposite
directions, characteristic of a vortex. Therefore if, for a
given mode, opposing sides have opposite phases, then
when projected onto the same coordinate axis the oscilla-
tions would actually be in phase. In our case, the excited
modes can be classified as: 2I—a gyroscopic mode (m ¼ 1,
n ¼ 0); 2II an m ¼ 1, n ¼ 1 mode; 2III an m ¼ 1, n ¼ 2
mode.

When we discuss the modes in the ring, the major
difference from the disk is the absence of the vortex core.
All the doublets become degenerate (as we mentioned
above, the use of square lattice prevents some of the
doublets from being completely degenerate). At the same
Fig. 2. Z projection of the most strongly excited modes for: a disk,

(I) f ¼ 1:05GHz, (II) f ¼ 10:11GHZ, (III) f ¼ 12:34GHz; ring, (IV) and

(V) f ¼ 10:5GHz; square slab, (VI) f ¼ 1:04GHz, (VII) f ¼ 6:27GHz,

(VIII) f ¼ 10:34GHz, (IX) f ¼ 12:22GHz, (X) f ¼ 13:05GHz.
time the number of modes that can be excited by in-plane rf
fields greatly decreases. In disks, modes can be excited if
their spatial distribution obeys certain symmetry require-
ments; since the precession occurs in local coordinate
systems, the mode should possess odd symmetry in order to
be excited, Alternatively the mode can be excited if much of
its amplitude is concentrated in the vortex core, since the
magnetization inside the vortex core is mostly perpendi-
cular to the plane of the disc, and therefore it couples to the
in-plane rf field. Only modes of the first type can be excited
in the case of rings; therefore the spectrum is much
narrower and corresponds to the excitation of fewer
modes. In Figs. 2IV and 2V we show the most strongly
excited doublet for the ring.
Spin waves in square slabs have previously been studied

experimentally by Perzlmaier et al. [27]. The main
difference with respect to the absorption spectrum for
disks arises from the presence of low-frequency ‘‘corner’’
modes (Figs. 2VII and 2VIII), i.e. modes that are confined
mostly to the corners. The physical interpretation of these
modes is that they are localized along the domain walls (the
vortex state in square slabs can be represented as four
domains contacting along the square diagonal). These
modes have been recently observed by Demokritov. If the
vortex core is removed (e.g. a square nanodot with a hole),
these corner modes are doubly degenerate—one with odd
and one with even symmetry. Other modes are affected by
the shape changes to a lesser degree, especially those modes
with four-fold symmetry, which remain nearly exactly the
same as for disks. In Figs. 2VI–X we show the most
strongly excited mode for the square slab.

5. Conclusions

We have developed a method for calculating the
resonant modes and the absorption characteristics of a
magnetic body of arbitrary shape that is applicable in the
linear regime. The techniques have been demonstrated for
vortex structures in discs, rings and square nanodots.
The program that incorporates our code is available for

public use at www.rkmag.com. We thank G. Finocchio,
P. Sievert and K. Guslienko for discussions.

Acknowledgments

This work was supported by the National Science
Foundation under Grant ESC-02-24210.

References

[1] B.A. Kalinikos, A.N. Slavin, J. Phys. C 19 (1986) 7013.

[2] P.H. Bryant, J.F. Smith, S. Schultz, D.R. Fredkin, Phys. Rev. B 47

(1993) 11255.

[3] P. Politi, M.G. Pini, A. Rettori, Phys. Rev. B 46 (1992) 8312.

[4] F.C. Nortemann, R.L. Stamps, R.E. Campley, Phys. Rev. B 47

(1993) 11910.

[5] E.O. Kamenetskii, Phys. Rev. E 63 (2001) 066612.

http://www.rkmag.com


ARTICLE IN PRESS
K. Rivkin, J.B. Ketterson / Journal of Magnetism and Magnetic Materials 306 (2006) 204–210210
[6] S. Jung, J.B. Ketterson, V. Chandrasekhar, Phys. Rev. B 66 (2002)

132405.

[7] K. Rivkin, A. Heifetz, P.R. Sievert, J.B. Ketterson, Phys. Rev. B 70

(2004) 184410.

[8] M. Grimsditch, L. Giovannini, F. Monotcello, F. Nizzoli, G.K. Leaf,

H.G. Kaper, Phys. Rev. B 70 (2004) 054409.

[9] K. Rivkin, L.E. DeLong, J.B. Ketterson, J. Appl. Phys. 97 (2005)

10E309.

[10] L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 2, p. 365,

(Chapter VII).

[11] J. Slonczewski, J. Magn. Magn. Mater. 159 (1996) L1.

[12] A. Brataas, Y.V. Nazarov, G.E. Bauer, Phys. Rev. Lett. 84 (2000)

2481.

[13] S. Zhang, P.M. Levy, A. Fert, Phys. Rev. Lett. 88 (2002) 236601.

[14] J.E. Wegrove, et al., Europhys. Lett. 45 (1999) 626.
[15] Z. Li, S. Zhang, Phys. Rev. B 68 (2003) 024404.

[16] J.Z. Sun, Phys. Rev. B 62 (2000) 570.

[17] R.P. Cowburn, et al., Phys. Rev. Lett. 83 (1999) 1042.

[18] M. Maicas, et al., J. Magn. Magn. Mater. 242–245 (2002) 1024.

[19] R.E. Dunin-Borkowski, et al., Appl. Phys. Lett. 75 (1999) 2641.

[20] B.A. Ivanov, C.E. Zaspel, Appl. Phys. Lett. 81 (2002) 1261.

[21] K.Y. Guslienko, A.N. Slavin, J. Appl. Phys. 87 (2000) 6337.

[22] V. Novosad, et al., Phys. Rev. B 66 (2002) 052407.

[23] J.P. Park, et al., Phys. Rev. B 67 (2004) 020403(R).

[24] R. Hertel, J. Kirschner, J. Magn. Magn. Mater. 272 (2004).

[25] L. Giovannini, F. Monotcello, F. Nizzoli, G. Gubbiotti, G. Carlotti,

T. Okuno, T. Shinjo, M. Grimsditch, Phys. Rev. B 70 (2004)

172404.

[26] X. Zhu, et al., Phys. Rev. B 71 (2005) 180408(R).

[27] K. Perlzmaier, et al., Phys. Rev. Lett. 94 (2005) 057202.


	Micromagnetic simulations of absoption spectra
	Introduction
	Finding the resonance frequencies and modes
	Calculating the response to an applied time-dependent magnetic field
	Application to magnetic nanodots
	Conclusions
	Acknowledgments
	References


