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A relatively new method is developed to numerically calculate the spin-wave-related properties of
a magnetic body of arbitrary shape. Starting with a discrete dipole approximation and the linearized
Landau–Lifshitz equation, the resonant frequencies and the associated amplitudes of the individual
moments are obtained for all modes; from this information we are able to calculate the energy
absorbed by the various modes excited by a position- and time-dependent external magnetic field.
The method has been demonstrated for a number of cases including thin disks and rings and for
equilibrium configurations ranging from the saturated high-field limit to the vortex states at low
fields. © 2005 American Institute of Physics. fDOI: 10.1063/1.1851873g

I. INTRODUCTION

Over the past few years the subject of resonant spin
waves in vortex structures in magnetic nanoparticles has at-
tracted much attention. While significant progress has been
made, in both the experimental and theoretical aspects, we
here stress that the implementation of an uncommonly used
method based on the representation of a magnetic body by
discrete dipoles, together with a linearization of the associ-
ated dynamical equations motion, can be quite powerful.

Very similar methods have been tried in the past by
Politi et al.1 and by Nortemannet al.;2 however, in their
original form these methods were of limited applicability,
lacking among other things a procedure that would allow one
to calculate the absorption due to arbitrary external time-
dependent magnetic fields. In the current paper we imple-
ment our version of the above-mentioned methodsfor more
details, see Ref. 3d and use it to study resonant modes of a
typical vortex structure consisting of a central core, where
the magnetization points primarily out of plane, and the rest
of the sample, where the magnetization is in plane and en-
circles the vortex coresas studied, e.g., by Usov and
Peschany4,5d.

Recent work by Hertel and Kirschner6 and by Parket
al.7 employed, respectively, finite elements and direct inte-
gration of the Landau–Lifshitz equation in order to obtain a
theoretical description of resonant spin waves. Unlike these
authors, we are not able to treat the nonlinear response of
magnetic media, and in the present case we are not able to
study the precession of the vortex core as a whole, in the way
described by Guslienkoet al.,8 but nevertheless our method
is capable of producing the spin-wave spectrum and yielding
a reliable representation of absorption spectra.

II. NUMERICAL METHOD EMPLOYED

We start with the Landau–Lifshitz equation with a dissi-
pative Gilbert term

dmi

dt
= − gmihi

total −
bg

Ms
mismihi

totald, s2.1d

wheremi is the magnetic moment of theith spin, g is the
gyromagnetic ratio, andb is a parameter governing the dis-
sipation. We will assume that the applied fields and magnetic
moments can be written as the sum of a zeroth-order static
part and a small first-order time-dependent perturbation

mi = mi
s0d + mi

s1dstd, s2.2ad

hi = hi
s0d + hi

s1dstd. s2.2bd

Assuming the time-dependent part has the form

mi
s1dstd = mi

s1de−ivt, s2.3d

the linearized form of Eq.s2.1d is given by
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the eigenvalues,v, characterize the normal modes. Forb
=0, corresponding to the dissipationless case,v will be real,
provided the zeroth-order spin directions have been relaxed
to their stable equilibrium directions. Due to the fact that we
use a complex form to represent the physical moments,
which are real, any solution of Eq.s2.3d with a positivev8
and eigenvectormi

s1d will be accompanied by a second solu-

tion with eigenfrequency −v8 and eigenvectormi
s1d* .

The microscopic fields entering Eq.s2.3d include the
dipole-dipole and exchange interactions
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it is straightforward to add anisotropy energy terms. In the
present paper, we restrict the exchange interaction to the
nearest neighbors only, i.e.,

Hexchange= Jo
i

nn

mi . s2.7d

After solving Eq.s2.3d for the eigenvectorsVi
skd and the

corresponding eigenvaluesvskd, we must then ask how the
various modes of oscillation can be excited by applying a
time-dependent external magnetic field. Following the stan-
dard procedure for solving an inhomogeneous linear first-

order ordinary differential equationsODEd, in the presence
of this dynamic field, Eq.s2.4d can be written in a matrix
form as

dmi
as1d

dt
= o

j ,b
Aij

abmj
bs1d + gi

a

x̂agi
a = gmi

s0dhi
srfd

= gx̂ao
b,x
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bs1dhi
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Mij
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bsrfd. s2.8d

Here we used Greek letters to number the coordinates, and
Roman letters to number the dipoles, whereAij

ab is a matrix
corresponding to the homogeneous part of Eq.s2.4d, andgi

a

is an inhomogeneous term corresponding to the applied time-
dependent magnetic field. Henceforth it will be convenient to
lump the spin index,i, and the vector-component indexa

into a single index,i8; e.g., we write,mi
as1d→m

i8
s1d. Again

following the standard procedure to solve a linear ODE, and
using our new notation, we can transform Eq.s2.8d into the
form

mi
s1d = o

k

Pikyk, Pik = Vi
skd, Pki

−1 = Vi
skd* ,

P−1P = 1,
dyk

dt
= lskdyk + o

i

Pki
−1gi , s2.9d

the solution of which is

ykstd = elskdtck + elskdtE e−lskdto
i

Pki
−1gistddt. s2.10d

We will consider only the case where the applied rf field
has a sinusoidal time dependence, in which case the solution
can be written as

FIG. 1. Absorption as a function ofv for a uniform field parallel tox
direction,J=5.

FIG. 2. One of the excited modes,v=0.521 middle layer.

FIG. 3. One of the excited modes,v=4.13, middle layer.
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where we introduced the frequency-dependent susceptibility
xi j

xi j = − o
k=1

3N ol=1

3N
Mlj

s0dVl
* skd

v − vskd Vi
skd. s2.12d

Note that neither the static nor dynamic applied magnetic
field needs to be uniform and may have any spatial depen-
dence.

Recalling the thermodynamic expression for the change
in magnetic energy,9 we may write the absorption as

Ė =
1

2
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i

Imfmi
s1dhi

srfd*g. s2.13d

This term can be shown to be proportional tofhsrfdg2; all the
quantities occurring in these formulas can be found by using
the method given in previous section, which gives
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This formula can be used to calculate the absorption as a
function of both the frequency of the rf field and the strength
of the static magnetic field. Note that the quantity
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plays the role of anoscillator strength—it can be calculated
separately and for a givenv then involves only a single sum.

III. ABSORPTION SPECTRUM AND RESONANCE
MODES OF A VORTEX STRUCTURE IN A DISK

We now discuss the resonant modes for a vortex ground
state. It is convenient to switch to dimensionless units in
which the magnetic moments and the gyromagnetic ratio are
unity; such units are connected with the Gaussian system by

HGauss

Ms
= H,

vGauss

gMs
= v, J =

AGauss

Ms
2a2 . s3.1d

We treat the case of a body consisting of five layers, each of
which has a diameter of 19sin units of the nearest-neighbor
spacingd. We have done similar calculations with many more
dipoles, but the absorption spectra are similar for the case of
a uniform rf field, although there are of course more modes.

sNote that the modes characterized by shorter wavelengths
are not strongly excited by a uniform rf field.d The axes are
chosen such that the disk is lying in anx-y plane,J is equal
to 5, andb=0.005. The equilibrium configuration is a vortex
with its core in the center of each of the layers. In this par-
ticular case there is only a small variation in the spatial dis-
tribution of the moments among these five layers. One must
be careful to find the equilibrium ground state—there are
many states with slightly higher energies but with completely
different absorption spectra.

We performed calculations with two different applied rf
field configurations—both were uniform, but one was paral-
lel to x axis and the other parallel toz axis. The absorption
spectrum for the first case is presented in Fig. 1, with some
of the excited modes presented in Figs. 2 and 3. The ellipses
centered on each site approximately represent the orbits of
individual spin precession, and the lines inside represent the
relative phases. One should keep in mind that the equilib-
rium axes around which the dipoles precess differsnote the
central dipoles tip out of the plane of the disk, while the
remainder lie in planed. The mode presented in Fig. 2 is
completely localized within the vortex core. We note that this
is somewhat similar to the mode studied previously by Gus-
lienko et al., although the difference in our approaches pre-
vents us from establishing a rigorous connection.

The modes excited by the field applied in disk plane
have oscillations localized within the vortex core, and exhibit
Bessel-functionlike behavior outside of the vortex core. If
the core is removedsby creating a hole in the middle of such
a diskd, the modes obviously would become doubly degen-
erate and can be relatively well described by Bessel func-
tions, as discussed in Ref. 10.

IV. CONCLUSIONS

We have developed a method for calculating the reso-
nant modes and the absorption characteristics of a magnetic
body of arbitrary shape in an arbitrary static and dynamic
magnetic field that is applicable in the linear regime. The
techniques have been demonstrated for a vortex ground state
in a three-dimensionals3Dd disk. This work was supported
by NSF Grant No. ECS-0224210.
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